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Overview

1. Collective Thomson Scattering

2. FPGA-based continuous ultrafast digitizer
3. ITERCTS

4. Dedicated calibration system

5. Calibration Procedure and Caveats
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1. CTS
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Collective Thomson Scattering principle

Signal of interest

~1 MW in ~1 nW out
Probe Receiver
r Received scattered radiation ,
ks

Incident radiation 5 S ‘

ko k — k — k
. . o .8 i
Resolved fluctuations k! W = W — W
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Collective Thomson scattering 3
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2. FPGA-based continuous
ultrafast digitizer
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s Direct sampling vs indirect
o
S : - Filter Banks RF Digitizers
| Direct | Pros: CW, hardware Requires 130 GS/s
Fom bins
S e — = Non commercial
E  \rm Cons: Filters, :
S (.| Indirect 5 electronics 10-100 MHz > ©VV Impossible
| e.g. g %’ wide at 60 GHz
| | Difficult/expensive
Downconversion P 110 GS/s wasted
@ ; = Emergent solutions?
IF | 3
0 - 10 GHZ ! =
i &
55LC(5)HZ | Already done. Already done.
________________________________ Hardware bins, high Flexible time/frequency
Homodyne +3 resolution CW. resolution.
()
Heterodyne '-g Cons: Many potentia Cons: Lower resolution.
Superheterodyne — electronic failures, Challenging data-rate.

frequency resolution peN, Multiple downconvesion

cost
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DTU FPGA-based fast-digitizers T. Verdier et al, Fus. Eng. Des. 206 (2024)

>
Analog signal
10s, 5 GHz
ADC
lock ADC:
.lgoloé?_'lzlb . ._. Analog‘tO‘digital
Digitizes converter
10 Gsa/s
Digital signal *J. Rasmussen et al, 2026, JINST,
8-bits(now 12 bits*) in prep (EUROfus. pinboard #40728)
FPGA |, v
_ FPGA: ; rras
Handl Field-programmable
aneles gate-array
/0 =120 Gb/s

Packaged data
Ethernet

PC

Stores

Mem. > 100 GB — e —
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Some measurements
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T. Verdier et al, Fus. Eng. Des. 206 (2024)
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Frequency [GHz]

Wendelstein 7-X shot 20230330.23
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. ITER CTS
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ITER CTS purpose and setup
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Measurement parameter Range
*Alpha density profile > 107" m-3
Alpha energy spectrum 0.3 -3.5MeV
*p, D, T, 3He energy spectrum 0.1 -1MeV
* Only CTS
Time res. Spatial res. Required
Accuracy
10—-100 cm
100 ms , 20%
(50 cm 1in the center)

7 Views + 1 Passive
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Measurement accuracy, based on trial fits to synthetic ITER CTS spectra:

MPO068:

MPO069:

MPO70:

Measurement performance

Measurement parameter Range Time |Req |Inferred accuracy
res |acc
: : 9 + 2% (baseline P,=100 eV)
17 m-3 _ 0 b
Alpha density profile at n, > 10" m 100 ms | 20% 8 + 2% (steady-state, P,=1 keV)
Alpha energy spectrum E=0.3-3.5MeV | 100 ms | 20% _Spectral shape assumed in all
inversions
3% (baseline, integrated g(u) of fast D,
p, D, T, 3He energy spectrum E=0.1-1MeV | 100 ms | 20% Py=100 eV))

17% (steady-state, integrated g(u) of
fast D, P,=1 keV)

% J. Rasmussen et al., Nucl. Fusion 59, 096051 (2019)
% J. Rasmussen et al., PPCF 61, 095002 (2019)
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Constituents of the ITER CTS diagnostic

» Gyrotron (60 GHz, ~1.3 MW), power supply, and
high power transmission line (from assembly hall)

 Port-plug based quasi-optical transmitter and
receiver system

* Quasi-optical transmission lines from port-plug to
diagnostic hall (~50 m)

AR B

38 3. BNLIPMT

» Receiver electronics (W) and data acquisition (G
samples s)
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= Schematic of the ITER CTS diagnostic

MW source
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4. Dedicated
calibration system
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Highlight on calibration system
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Principal functionality of calibration system
Signal picked up by ... and transmitted
individual secondary via the receiver TLs

Microwave receivers
aquiring "’known” calibration

receiver mirrors M3

__________________________________

i Receiver Mirrors (3) & Waveguides i *********************** fbi Receiver Electronics i Slgnal;
__________________________________ Ex-vessel receiver WG (x8) C
“Sniffer” WG :
|
| .
| WG switch enables a
| direct calibration of
| . electronics bypassing
| |
| | the TLs
v |
| VT Tt 1
A - ------ 'L~ Microwave Source outside PP !
In-vessel calibration WG Ex-vessel calibration / “sniffer’ WG =777 77777 TTTooomomm oo mooes
Emitting via @3.581 mm <1 W tunable (55-65
hole in center of plasma Transmission via 9™ receiver TL GHz) microwave source
facing mirror M2 — the auxiliary TL in diagnostic cubicle
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Calibration and alignment monitoring

* Auxiliary system for

— Calibration (in-situ) of receiver transmission lines
« Using only 1 transmission line and an external source

During plasma operation: Sniffer probe
monitors gyrotron power & spectrum

Between plasma operations:

Calibration system checks alignment of
Receiver TLs using ex-vessel source and
receivers

@3.581mm opening

_5 dB

MB1 | SBWG
s DM‘&A
. ks
DSM | CTS | aas
i E
MB2
Power monitor, -70 ... -80 dB coupling ratio
V-pol
H-pol| | -6dB
-6dB
-10dB
Coupling mirrors
-2dB 2 -2dB -3dB
-2dB
oMT OMT | I\

Auxillary box \ 1

-10dB

——— Fundamental waveguide, WR-15
= Square-to-circular adapter

<= = < Quasi-optical Sniffer-probe/calibration signal

Circular waveguide, $3.581 mm

63.5 mm
OCWG

Receiver
Electronics /
calibration signal
source

< Horn antenna

Additionally, 13 thermocouples monitors the in-vessel components
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Fused silica
disk window
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5. Calibration procedure
and caveats
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Background for calibration principle

|ldeal response

» Liquid Nitrogen calibration

Input Power{
too slow and low-power Sr?ectral “Realistic” response
density
» Avoid using an in-vessel [eV]

hot source | |
Typical plasma signals

 Plasma ECE can be near
zero* (for 55-65 GHz) at [ ,
— g

norm.all operating f [GHZ] Measured
conditions signal [V]

*]. Rasmussen et al, Plasma Phys. Control. Fusion 61 (2019)
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Solution

Ex-vessel tunable microwave source |deal response
emitting signal into:

Input Power{ - o
. Afrequency/power meter Spectral Realistic” response
» Known calibration signal density
[eV]
 The receiver electronics
» Calibration of the back-end
* The plasma facing mirror >
» Calibration of the transmission f [GHZ] Measured
line by comparison to signal [V]

reference
Power level (and frequency) of the source

can be chosen to relevant ranges
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Calibration procedure

Prior to ITER operation the complete transmission lines are calibrated using the in-situ
calibration system — Used as later reference for verifying the receiver TLs integrity

Prior to operational day, a full calibration cycle can be performed — comparing to reference

In-between plasma discharges, calibration may be perfomed

The CTS calibration may be supplemented with ECE measurements for e.g. 1/3 B,

— And for full field B,, all receivers should pick-up the same ECE signal (varying in f, possibly
very low level*)

Identified challenge:

« Ex-vessel TLs are not evacuated -> transmission loss due to O2 absorption lines ~61 GHz
« Compensated in the initial calibration — however, evacuated TLs would have been nice...

*]. Rasmussen et al, Plasma Phys. Control. Fusion 61 (2019)
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Monochromatic sources VS amplifier loading

» Electronics almost never behave like the “ideal’. Effects include:
— Gain compression effects
— Power supply load
— Bias
— Distortion
— Higher temperatures, and thermal floor
— Non-linearities?

 Also true for fast digitizers (depending on Signal/Dynamic range)

» Single frequency input / Low load representative of broadband plasma signals?
— Favor broadband + single peak
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DTU Plot from J. Rasmussen et al.(2019). https://doi.org/10.1088/1741-4326/ab2f50
o 15 = | | | | 1 1 | | =
-— %‘ (a) Original spec
; { Resampled spec
Telld = Fit+error
2 VS 3 digitizers 2o oL .
. 2 f
per view c
=
8 5 1
©
2
o 0 3

56 57 58 59 60 61 62 63 64
v [GHz]

1LO,
No cross-calibration

3 LOs,

Overlapping frequency ranges,
#Fdynamic ranges bulk/wings
More data
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Summary and outlook

* ITER CTS front-end has passed the Final Design Review and will fulfil measurement
requirements for alpha spectrum/density and fast ion spectra

* New continuous ultrafast (10+ GS/s) digitizers enable Filterbank-like use, with bit-depths
progressing (now 12 bits), and on-board processing capabilities for e.g. real-time FFT

* In-situ calibration system is part of design
— External tuneable (power and frequency) source
— Calibration and transmission line integrity checks at representative ranges
— Choice of digitization setup can affect calibration reliability
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Additional slides
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ohE CTsa U

o :
“I : ECRH antennae |§
CTS receiver \a\*
= = u ' CTsS recelver
Fast- and bulk-ion CTS diagnostics
» Depending on setup and scattering geometry the CTS spectrum can be sensitive to
the fast and/or the bulk ion features in the velocity distribution function.
 Demonstrated on several present day machines; e.g.:

— TEXTOR * N

— AUG |

— W7-X

— LHD

— and HL-2A (upcoming) TEXTOR # 103837 - velocity distribution, I0g(F) ogem)
S.B. Korsholm et al. NIMA 623 (2010) i 8
H. Bindslev et al, PRL 97 (2006) === -
S.B. Korsholm et al, PRL 106 (2011) i 2251 5

waveguide = c 3

F. Meo et al, RSI 79 (2008) 2 22 §
S.K. Nielsen et al, Phys. Scr. 92 (2017) FAL
M. Stejner et al, PPCF 59 (2017) 211 "
D. Moseev et al, RSI 90 (2019) 2003 )
M. Nishiura et al, Nucl. Fusion 54 (2014) 2 -_1‘?"" — 1 -
W.C. Deng et al, JINST 17 (2022) Velocity / 10° m/s
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Design restrictions for a fast-ion ITER CTS diagnostic

1 MW gyrotron beam at 60 GHz (subharmonic to minimize ECE background noise) —>
no absorption in the plasma

» Transmission of 1 MW probe beam in @88.9 mm waveguide through a resonant
magnetic field in port plug -> risk of breakdown inside in-vessel wavequide

» Radiation from the plasma & absorption of gyrotron beam (~5 kW for plasma facing
mirrors) -> cooling of components

» Neutron streaming through apertures in the first wall blanket ->

Diagnostic performance vs. loads on components and machine
= Design of mirrors to achieve diagnostic goal while being robust -> No moveable parts
» Restricted space in the allocated section of a port plug

» Restricted space at closure plate for transmission of microwaves

DTU Physics Continuous Ultrafast Sampling for CTS: Implementation and Consequences for ITER Calibration
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Closer view at plasma facing receiver mirror (M2)

Farfield Directivity Abs (Phi=90)

0

Farfield (F=60) [1]
Phi= 90 30 30 Phi=270

Prerequisite that antenna pattern is % NS o
relatively uniform. l.e. sufficient power
reaching each secondary receiver
mirrors (M3).

Frequency = 60 GHz

Main lobe magnitude =  7.08 dBi

Main lobe direction = 5.0 deg.
Angular width (3 dB) = 66.6 deg.

Theta / Degree vs. dBi Side lobe level = -6.8 dB
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