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Overview

1. Collective Thomson Scattering

2. FPGA-based continuous ultrafast digitizer

3. ITER CTS

4. Dedicated calibration system

5. Calibration Procedure and Caveats
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1. CTS
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Collective Thomson Scattering principle
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2. FPGA-based continuous 
ultrafast digitizer
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Direct sampling vs indirect 
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Analog signal
10s, 5 GHz

ADC
-

Digitizes
10 Gsa/s

FPGA
-

Handles
I/O = 120 Gb/s

PC
-

Stores
Mem. > 100 GB

Digital signal
8-bits

Packaged data
Ethernet

ADC: 
Analog-to-digital 

converter

FPGA: 
Field-programmable 

gate-array

Clock
10 GHz

FPGA-based fast-digitizers T. Verdier et al, Fus. Eng. Des. 206 (2024)

*J. Rasmussen et al, 2026, JINST, 
in prep (EUROfus. pinboard #40728) (now 12 bits*)
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Some measurements

8

6% duty cycle

100% duty cycle

T. Verdier et al, Fus. Eng. Des. 206 (2024)

Gyr ON Gyr ON
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Wendelstein 7-X shot 20230330.23
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T. Verdier et al, Fus. Eng. Des. 206 (2024)
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3. ITER CTS
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Baseline Steady-state

ITER CTS purpose and setup

Measurement parameter Range

*Alpha density profile > 1017 m-3

Alpha energy spectrum 0.3 – 3.5 MeV

*p, D, T, 3He energy spectrum 0.1 – 1 MeV

* Only CTS

Time res. Spatial res.
Required 

Accuracy

100 ms
10–100 cm 

(50 cm in the center)
20%

7 Views + 1 Passive
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Measurement performance

12

Measurement accuracy, based on trial fits to synthetic ITER CTS spectra:

MP068:

MP069:

MP070:

Measurement parameter Range Time 

res

Req

acc

Inferred accuracy

Alpha density profile at nα > 1017 m-3 - 100 ms 20%
9 ± 2% (baseline Pb=100 eV)

8 ± 2% (steady-state, Pb=1 keV)

Alpha energy spectrum E = 0.3-3.5 MeV 100 ms 20%
Spectral shape assumed in all 

inversions 

p, D, T, 3He energy spectrum E = 0.1–1 MeV 100 ms 20%

3% (baseline, integrated g(u) of fast D, 

Pb=100 eV))

17% (steady-state, integrated g(u) of 

fast D, Pb=1 keV)

❖ J. Rasmussen et al., Nucl. Fusion 59, 096051 (2019)

❖ J. Rasmussen et al., PPCF 61, 095002 (2019) 
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Constituents of the ITER CTS diagnostic

• Gyrotron (60 GHz, ~1.3 MW), power supply, and 

high power transmission line (from assembly hall)

• Port-plug based quasi-optical transmitter and 

receiver system

• Quasi-optical transmission lines from port-plug to 

diagnostic hall (~50 m)

• Receiver electronics (nW) and data acquisition (G 

samples s-1) 
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Schematic of the ITER CTS diagnostic

Launcher Transmission LineLauncher line in port

Receiver lines in port Receiver Transmission Lines Electronics

MW source
60 GHz
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4. Dedicated 
calibration system 
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Highlight on calibration system

M2
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Principal functionality of calibration system

17

<1 W tunable (55-65 

GHz) microwave source 

in diagnostic cubicle 
Transmission via 9th receiver TL 

– the auxiliary TL

Emitting via Ø3.581 mm 

hole in center of plasma 

facing mirror M2

Signal picked up by 

individual secondary 

receiver mirrors M3

… and transmitted 

via the receiver TLs Microwave receivers 

aquiring ”known” calibration 

signal; 

WG switch enables a 

direct calibration of 

electronics bypassing 

the TLs 
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Calibration and alignment monitoring

• Auxiliary system for

– Sniffer probe for gyrotron probe beam

– Calibration (in-situ) of receiver transmission lines

• Using only 1 transmission line and an external source

18

Additionally, 13 thermocouples monitors the in-vessel components

During plasma operation: Sniffer probe 

monitors gyrotron power & spectrum

Between plasma operations:

Calibration system checks alignment of 

Receiver TLs using ex-vessel source and 

receivers

Ø3.581mm opening
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5. Calibration procedure 
and caveats
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Background for calibration principle

• Liquid Nitrogen calibration 

too slow and low-power

• Avoid using an in-vessel 

hot source

• Plasma ECE can be near 

zero* (for 55-65 GHz) at 

normal operating 

conditions

20

Measured 

signal [V]

Input Power 

Spectral 

density

[eV]

Ideal response

“Realistic” response

Typical plasma signals

f [GHz]

*J. Rasmussen et al, Plasma Phys. Control. Fusion 61 (2019)
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Solution

21

Ex-vessel tunable microwave source 

emitting signal into:

• A frequency/power meter

➢ Known calibration signal

• The receiver electronics

➢ Calibration of the back-end

• The plasma facing mirror

➢ Calibration of the transmission 

line by comparison to 

reference

f [GHz] Measured 

signal [V]

Input Power 

Spectral 

density

[eV]

Ideal response

“Realistic” response

Power level (and frequency) of the source 

can be chosen to relevant ranges
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Calibration procedure

22

• Prior to ITER operation the complete transmission lines are calibrated using the in-situ 

calibration system – Used as later reference for verifying the receiver TLs integrity

• Prior to operational day, a full calibration cycle can be performed – comparing to reference

• In-between plasma discharges, calibration may be perfomed 

• The CTS calibration may be supplemented with ECE measurements for e.g. 1/3 B0

– And for full field B0 all receivers should pick-up the same ECE signal (varying in f, possibly 

very low level*)

Identified challenge:

• Ex-vessel TLs are not evacuated -> transmission loss due to O2 absorption lines ~61 GHz

• Compensated in the initial calibration – however, evacuated TLs would have been nice…

*J. Rasmussen et al, Plasma Phys. Control. Fusion 61 (2019)
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Monochromatic sources VS amplifier loading

• Electronics almost never behave like the “ideal”. Effects include: 

– Gain compression effects

– Power supply load

– Bias

– Distortion

– Higher temperatures, and thermal floor

– Non-linearities?

• Also true for fast digitizers (depending on Signal/Dynamic range)

• Single frequency input / Low load representative of broadband plasma signals?

– Favor broadband + single peak

23
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2 VS 3 digitizers

per view

24

Downshifted Bulk + gyrotron line Upshifted

Downshifted Upshifted

3 LOs, 

Overlapping frequency ranges,

≠dynamic ranges bulk/wings

More data

1 LO, 

No cross-calibration

Plot from J. Rasmussen et al.(2019). https://doi.org/10.1088/1741-4326/ab2f50 
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Summary and outlook

• ITER CTS front-end has passed the Final Design Review and will fulfil measurement 

requirements for alpha spectrum/density and fast ion spectra

• New continuous ultrafast (10+ GS/s) digitizers enable Filterbank-like use, with bit-depths 

progressing (now 12 bits), and on-board processing capabilities for e.g. real-time FFT

• In-situ calibration system is part of design 

– External tuneable (power and frequency) source

– Calibration and transmission line integrity checks at representative ranges

– Choice of digitization setup can affect calibration reliability

25
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Additional slides
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Fast- and bulk-ion CTS diagnostics 

• Depending on setup and scattering geometry the CTS spectrum can be sensitive to 

the fast and/or the bulk ion features in the velocity distribution function.

• Demonstrated on several present day machines; e.g.:

– TEXTOR

– AUG

– W7-X

– LHD

– and HL-2A (upcoming)

28

❖ S.B. Korsholm et al. NIMA 623 (2010)

❖  H. Bindslev et al, PRL 97 (2006)

❖  S.B. Korsholm et al, PRL 106 (2011)

❖  F. Meo et al, RSI 79 (2008)

❖  S.K. Nielsen et al, Phys. Scr. 92 (2017)

❖  M. Stejner et al, PPCF 59 (2017)

❖  D. Moseev et al, RSI 90 (2019)

❖  M. Nishiura et al, Nucl. Fusion 54 (2014)

❖  W.C. Deng et al, JINST 17 (2022)
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Design restrictions for a fast-ion ITER CTS diagnostic

▪ 1 MW gyrotron beam at 60 GHz (subharmonic to minimize ECE background noise) –> 

no absorption in the plasma

▪ Transmission of 1 MW probe beam in Ø88.9 mm waveguide through a resonant 

magnetic field in port plug -> risk of breakdown inside in-vessel waveguide 

▪ Radiation from the plasma & absorption of gyrotron beam (~5 kW for plasma facing 

mirrors) -> cooling of components

▪ Neutron streaming through apertures in the first wall blanket ->

Diagnostic performance vs. loads on components and machine

▪ Design of mirrors to achieve diagnostic goal while being robust -> No moveable parts 

▪ Restricted space in the allocated section of a port plug

▪ Restricted space at closure plate for transmission of microwaves

29
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Closer view at plasma facing receiver mirror (M2)

30

Prerequisite that antenna pattern is 

relatively uniform. I.e. sufficient power 

reaching each secondary receiver 

mirrors (M3).
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