# High-performance multiphysics FEM simulations in the Sparselizard open source library

Alexandre Halbach, Tampere University



# **Funding**

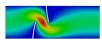


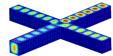
This work is supported by Superconducting Magnets Beyond 20 T, Academy of Finland, under Grant 324887

#### **Thanks**



Kindly provided the Feather M2 magnet dimensions.


# Oh, yet another open source FEM software!

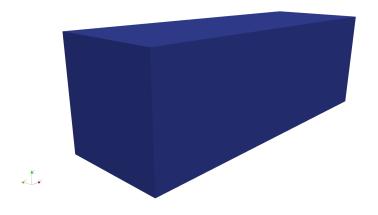

#### Yes, but unlike others!

- ► High-performance
- Strongly multiphysics
- Concise to write

#### sparselizard.org





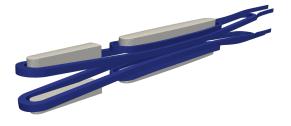






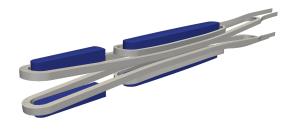


Created by J. Ruuskanen


Air



#### Magnetic shell



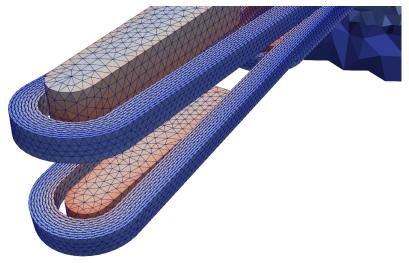

Top and bottom coils





Irons






#### Electric supply





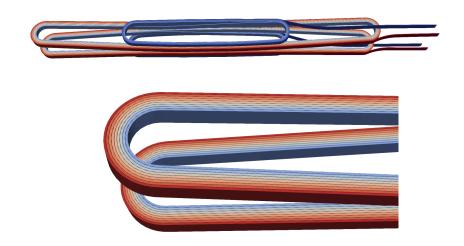
Mesh it with gmsh (1.1 million tetrahedra, few mins on my laptop)



#### Sparselizard demos - Region tags

- Download the static library or compile it
- Create a text file main.cpp
- Define region tags

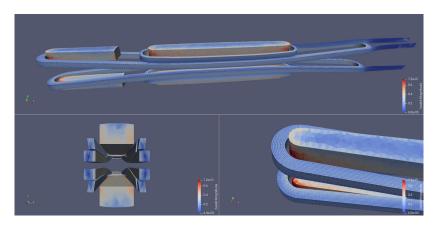
```
#include "sparselizard.h"
using namespace sl:
void createmesh(void);
int main(void)
    int air = 3000, topcoil = 3100, botcoil = 3200, topiron = 4100, botiron = 4200, lefttopiron = 4300;
    int leftbotiron = 4400, coreiron = 5000, bnd = 1, vintop = 2200, vouttop = 2300, vinbot = 2400, voutbot = 2500;
    mesh mymesh:
    mymesh.selectskin(bnd);
    mvmesh.load("fm2.msh"):
    int coils = selectunion({topcoil, botcoil});
    int irons = selectunion({topiron, botiron, lefttopiron, leftbotiron, coreiron}):
    int vins = selectunion({vintop, vinbot});
    int vouts = selectunion({vouttop, voutbot}):
    int solid = selectunion({coils, irons});
    int notmagnetic = selectunion({air, coils});
    int all = selectall():
```


#### Sparselizard demos - DC current flow

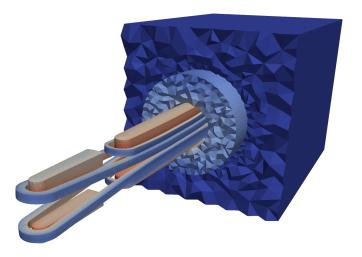
- Ports feature added for KiCAD
- ▶ Solve  $\nabla \cdot (\sigma \nabla v) = 0$  with 8 kA supply
- ► Takes 1.6 sec on my laptop

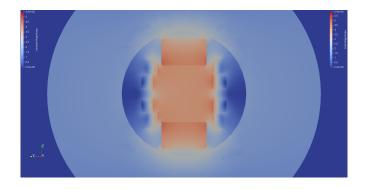
```
field v("h1"):
v.setorder(all, 1):
port Vt, It, Vb, Ib;
v.setport(vintop, Vt, It);
v.setport(vinbot, Vb, Ib);
v.setconstraint(vouts):
double sigma = 1e8:
expression j = sigma * -grad(v);
formulation elec;
elec += It - 8000.0:
elec += Ib - 8000.0:
elec += integral(coils, -sigma * grad(dof(v)) * grad(tf(v)));
elec.solve();
//i.write(coils, "i.vtu", 1):
```

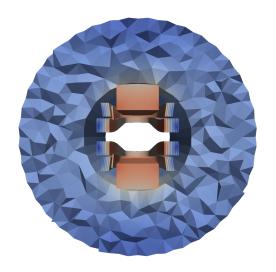
## Sparselizard demos - DC current flow


Unsurprisingly this is the electric potential profile:




- Saturation is taken into account (see online)
- ► Use A-v formulation (for a H-phi example see online)
- ► Takes 57 sec on my laptop (+- 1.2 M unknowns)


```
double mu\theta = 4*qetpi()*1e-7:
parameter mu:
mu|all = mu0;
mulirons = 1000 * mu0:
spanningtree spantree({bnd});
field a("hcurl", spantree);
a.setgauge(all):
a.setorder(all, 0);
a.setconstraint(bnd);
formulation magnetostatics:
magnetostatics += integral(all, 1/mu * curl(dof(a)) * curl(tf(a)));
magnetostatics += integral(coils, -j * tf(a));
magnetostatics.solve():
std::cout << "B center is " << norm(curl(a)).interpolate(all, \{0,0,0\})[0] << " T" << std::endl;
```


- ▶ With saturation (B center = 4.1 T): 3 min run time (3 NL its)
- ▶ B center is already very accurate here!



- ▶ Now use a.setorder(all, 2): 10+ million unknowns
- 30 min for 3 NL its on 16 core CPU







#### Sparselizard demos - Mechanical stresses

- See magnetostriction and mag. force sandbox examples online
- ► Include prestress + geometric nonlinearity in one line change
- ► Need plasticity? See H. Milanchian's talk
- In the unsaturated case simply:

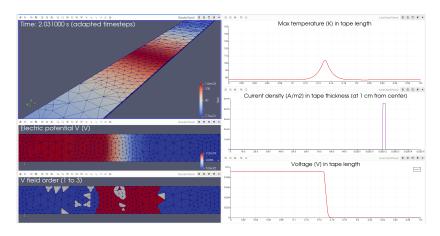
```
field u("hlxyz");
u.setcorder(coils, 2);

u.setconstraint(vins);
u.setconstraint(vouts);

expression b = curl(a);

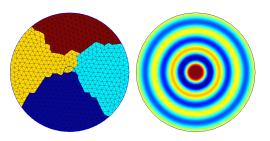
formulation elasticity;

elasticity += integral(coils, predefinedelasticity(dof(u), tf(u), 150e9, 0.3));


// Magnetostatic Maxwell stresses:
elasticity += integral(all, predefinedmagnetostaticforce(tf(u, coils), b/mu, mu));

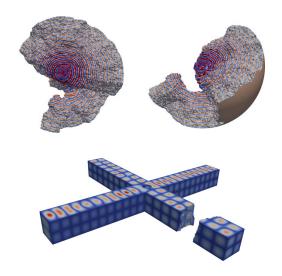
elasticity.solve();

u.write(coils, "u.vtu", 2);
```


#### Sparselizard demos - hp-adaptive 3D tape quench

#### See video




#### Sparselizard demos - DDM and beyond

▶ Need to run larger problems? DDM is available for any physic.



## Sparselizard demos - DDM and beyond

▶ 100 M dofs 3D acoustic freq. analysis: 40 min/100 CPUs



#### Thank you

Thank you for your attention! See you at www.sparselizard.org

