

Sensitivity analysis on material properties in mechanical analysis of YBCO tapes during cool-down and axial loading

Hamed MILANCHIAN - Alexandre HALBACH - Reijo KOUHIA - Tiina SALMI

This work was supported by Superconducting Magnets Beyond 20 T (Super20T), Academy of Finland, under Grant 324887.

C Outline

- Introduction
- 3D mechanical modeling with Sparselizard
- Validation
- Sensitivity analysis
- Conclusion

[] Introduction

- Developed a 3D simulation model for YBCO tape, using Sparselizard*
- Noticed a wide spread of material properties in literature
- Properties of super thin layers in YBCO tape ≠ properties of bulk materials
- Detailed material characterization seems necessary
- Which material should we measure?
- Properties which are critical for YBCO layer and average Tape strain and stress
- Performed a sensitivity analysis to determine impact of each property

^{*} HALBACH, Alexandre. Sparselizard-the user friendly finite element c++ library. 2017. (http://sparselizard.org/)

Elastic model

$$\begin{cases}
\nabla \cdot (\underline{\boldsymbol{\sigma}}) + f_b = 0 \\
\underline{\boldsymbol{\sigma}} = \boldsymbol{D} : \underline{\boldsymbol{\varepsilon}} - \underline{\boldsymbol{\sigma}}_{th} \\
\underline{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \vec{u} + \nabla \vec{u}^T) \\
\underline{\boldsymbol{\sigma}}_{th} = \frac{E}{1 - 2\nu} \underline{\boldsymbol{\varepsilon}}_{th} = \frac{E}{1 - 2\nu} \underline{\boldsymbol{\alpha}}_{th} \Delta T
\end{cases}$$

weak formulation:

$$\int_{\Omega} -\mathbf{D}\underline{\boldsymbol{\varepsilon}}(\vec{u})\underline{\boldsymbol{\varepsilon}}(\vec{u}')dV + \int_{\Omega} \underline{\boldsymbol{\sigma}}_{th}\underline{\boldsymbol{\varepsilon}}(\vec{u}')dV + \int_{\Omega'} \vec{f_b} \, \vec{u}'dV = 0$$

 $\underline{\boldsymbol{\sigma}}$ Cauchy stress tensor

 $\underline{\varepsilon}$ Cauchy strain tensor

 $egin{aligned} D & ext{Elastic tensor} \ ec{f}_b & ext{body force vector} \end{aligned}$

 \vec{u} Displacement vector

Poisson's ratio

 $\underline{\varepsilon}_{th}$

 $\underline{\alpha}_{th}$

Young modulus

Thermal change

Thermal strain tensor

Thermal expansion coefficient tensor

Bi-linear plasticity model

$$\frac{1}{1}$$

$$||\underline{s} - \underline{\alpha}|| - \kappa$$

$$\begin{cases}
f < 0 & \text{elastic} \\
f = 0 & \text{plastic} \\
f = ||\underline{s} - \underline{\alpha}|| - \kappa \\
\underline{s} = \underline{\sigma} - \frac{1}{3} \text{tr}(\underline{\sigma}) \underline{\mathbf{1}}
\end{cases}$$

$$\frac{\underline{\sigma}}{\underline{\sigma}} = D : (\underline{\varepsilon} - \underline{\varepsilon}^{P})$$

$$\dot{\underline{\varepsilon}}^{p} = \dot{\lambda} \frac{\partial f}{\partial \underline{\sigma}} = \dot{\lambda} \hat{n}$$

$$\dot{\kappa} = \beta H \dot{\lambda} , \ \dot{\underline{\alpha}} = (1 - \beta) H \dot{\lambda} \hat{n}$$

$$\dot{f} = 0$$

$$= \beta H \dot{\lambda} , \ \underline{\dot{\alpha}} = ($$

$$\underline{\underline{c}} - \underline{\underline{c}} + \underline{\underline{c}}$$
 $\underline{\underline{c}} + \underline{\underline{c}}$
 $\underline{\underline{c}} + \underline{\underline{c}}$

$$\frac{\boldsymbol{o}_{n+1}-2}{\Delta\lambda\hat{n}_{n+1}}$$

$$\hat{n}_{n+1} + \beta H$$

$$+\beta H$$

$$\underline{s} = \underline{\sigma} - \frac{1}{3} \operatorname{tr}(\underline{\sigma}) \underline{1}$$

$$\Delta \underline{\varepsilon} = \Delta \underline{\varepsilon}^e + \Delta \underline{\varepsilon}^p$$

$$\underline{\sigma}_{n+1} = \underline{\sigma}_{n+1}^{tr} - 2\mu \Delta \lambda \hat{n}_{n+1}$$

$$\Delta \underline{\varepsilon}^p \approx \Delta \lambda \hat{n}_{n+1}$$

$$\kappa_{n+1} = \kappa_n + \beta H \Delta \lambda$$

$$\underline{\alpha}_{n+1} = \underline{\alpha}_n + (1-\beta)H \Delta \lambda \hat{n}_{n+1}$$

$$f_{n+1} = 0$$

$$\beta)H\Delta\lambda\hat{n}_{n+1}$$

$$f$$
 Yield function \underline{s} Deviatoric stress tensor

Plasticity multiplier (norm)

Numerical elasto-plastic model for axial loading

1) Elastic prediction:

$$\begin{cases}
\int_{\Omega} -\mathbf{D}\Delta\underline{\varepsilon}(\vec{u})\Delta\underline{\varepsilon}(\vec{u}')dV + \int_{\Omega'} \vec{f}_b \, \vec{u}'dV = 0 \\
\underline{\varepsilon}_{n+1} = \underline{\varepsilon}_n + \Delta\underline{\varepsilon} \\
\underline{\sigma}_{n+1}^{\text{tr}} = \underline{\sigma}_n + \mathbf{D} : \Delta\underline{\varepsilon}
\end{cases}$$

2) Plasticity?

$$\begin{cases}
p = \frac{1}{3} \operatorname{tr}(\underline{\boldsymbol{\sigma}}_{n+1}^{tr}) \\
\underline{\boldsymbol{s}}_{n+1}^{tr} = \underline{\boldsymbol{\sigma}}_{n+1}^{tr} - p\mathbf{1} \\
f = ||\underline{\boldsymbol{s}}_{n+1}^{tr} - \underline{\boldsymbol{\alpha}}_n|| - \kappa_n
\end{cases}$$

3) Plasticity correction:

$$\hat{n}_{n+1} = \frac{\underline{\sigma}_{n+1}^{tr}}{||\underline{\sigma}_{n+1}^{tr}||}$$

$$\Delta \lambda = \frac{||\underline{s}_{n+1}^{tr} - \underline{\alpha}_n|| - \kappa_n}{2\mu + H}$$

$$\underline{\varepsilon}_{n+1}^p = \underline{\varepsilon}_n^p + \Delta \lambda \hat{n}_{n+1}$$

$$\underline{\sigma}_{n+1} = \underline{\sigma}_{n+1}^{tr} - 2\mu \Delta \lambda \hat{n}_{n+1}$$

$$\kappa_{n+1} = \kappa_n + \beta H \Delta \lambda$$

$$\underline{\alpha}_{n+1} = \underline{\alpha}_n + (1 - \beta) H \Delta \lambda \hat{n}_{n+1}$$

Numerical elasto-plastic thermal model for cool-down

1) Initial elastic prediction:

$$\int_{\Omega} -\mathbf{D}\Delta\underline{\varepsilon}(\vec{u})\Delta\underline{\varepsilon}(\vec{u}')dV + \int_{\Omega} \Delta\underline{\sigma}_{th}\Delta\underline{\varepsilon}(\vec{u}')dV = 0$$

$$\Delta\underline{\sigma}_{th} = \frac{E}{1 - 2\nu}\underline{\alpha}_{th}\Delta T$$

$$\underline{\varepsilon}_{n+1} = \underline{\varepsilon}_n + \Delta\underline{\varepsilon}$$

$$\underline{\sigma}_{n+1}^{tr} = \underline{\sigma}_n + (\mathbf{D}: \Delta\underline{\varepsilon} - \Delta\underline{\sigma}_{th})$$

2) Plasticity?

$$\begin{cases}
p = \frac{1}{3} \operatorname{tr}(\underline{\boldsymbol{\sigma}}_{n+1}^{tr}) \\
\underline{\boldsymbol{s}}_{n+1}^{tr} = \underline{\boldsymbol{\sigma}}_{n+1}^{tr} - p\mathbf{1} \\
f = ||\underline{\boldsymbol{s}}_{n+1}^{tr} - \underline{\boldsymbol{\alpha}}_n|| - \kappa_n
\end{cases}$$

3) Initial Plasticity correction:

$$\hat{n}_{n+1} = \frac{\underline{\sigma}_{n+1}^{tr}}{||\underline{\sigma}_{n+1}^{tr}||}$$

$$\Delta \lambda = \frac{||\underline{s}_{n+1}^{tr} - \underline{\alpha}_n|| - \kappa_n}{2\mu + H}$$

$$\Delta \underline{\sigma}_c = 2\mu \Delta \hat{n}_{n+1}$$

Numerical elasto-plastic thermal model for cool-down

4) Updated elastic prediction:

$$\begin{cases} \int_{\Omega} -\mathbf{D} \Delta \underline{\varepsilon}(\vec{u}) \Delta \underline{\varepsilon}(\vec{u}') dV + \int_{\Omega} \left(\Delta \underline{\sigma}_{th} + \Delta \underline{\sigma}_{c} \right) \Delta \underline{\varepsilon}(\vec{u}') dV = 0 \\ \underline{\varepsilon}_{n+1} = \underline{\varepsilon}_{n} + \Delta \underline{\varepsilon} \\ \underline{\sigma}_{n+1}^{\text{tr}} = \underline{\sigma}_{n} + (\mathbf{D} : \Delta \underline{\varepsilon} - \Delta \underline{\sigma}_{th}) \end{cases}$$

5) Plasticity?

$$\begin{cases}
p = \frac{1}{3} \operatorname{tr}(\underline{\boldsymbol{\sigma}}_{n+1}^{tr}) \\
\underline{\boldsymbol{s}}_{n+1}^{tr} = \underline{\boldsymbol{\sigma}}_{n+1}^{tr} - p\mathbf{1} \\
f = ||\underline{\boldsymbol{s}}_{n+1}^{tr} - \underline{\boldsymbol{\alpha}}_n|| - \kappa_n
\end{cases}$$

6) Plasticity correction:

$$\hat{n}_{n+1} = \frac{\underline{\sigma}_{n+1}^{tr}}{||\underline{\sigma}_{n+1}^{tr}||}$$

$$\Delta \lambda = \frac{||\underline{s}_{n+1}^{tr} - \underline{\alpha}_{n}|| - \kappa_{n}}{2\mu + H}$$

$$\underline{\varepsilon}_{n+1}^{p} = \underline{\varepsilon}_{n}^{p} + \Delta \lambda \hat{n}_{n+1}$$

$$\underline{\sigma}_{n+1} = \underline{\sigma}_{n+1}^{tr} - 2\mu \Delta \lambda \hat{n}_{n+1}$$

$$\kappa_{n+1} = \kappa_{n} + \beta H \Delta \lambda$$

$$\underline{\alpha}_{n+1} = \underline{\alpha}_{n} + (1 - \beta) H \Delta \lambda \hat{n}_{n+1}$$

YBCO tape and the constituent layers

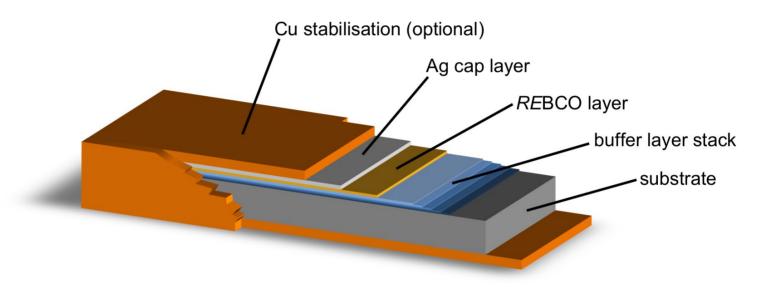
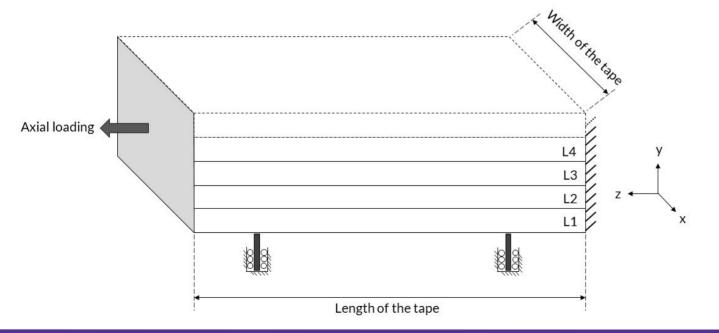
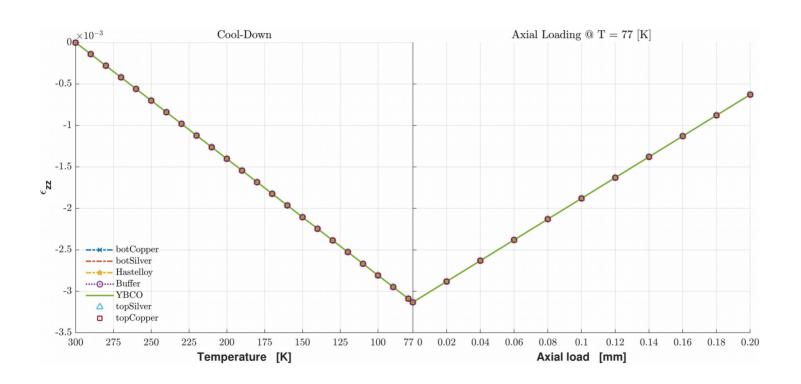


Figure from: Barth, Christian. High temperature superconductor cable concepts for fusion magnets. Vol. 7. KIT Scientific Publishing, 2013.

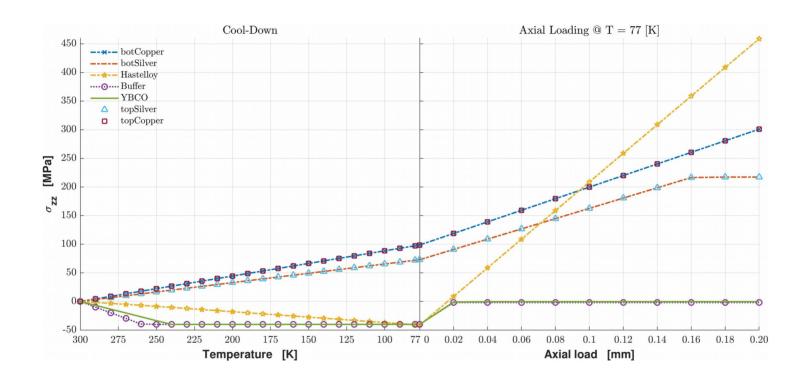

	Tape 1	Tape 2	Tape 3	Tape 4	
	Demo Tape validation Sensitivity analysis with COMSOL		validation with Tufts measurements*		
Manufacturer			SuperPower	SuNAM	
Number of layers	7	4	4	4	
Materials	Copper Silver Hastelloy Buffer YBCO	Copper Hastelloy YBCO	Copper Hastelloy YBCO	Copper Sainless steel YBCO	
length of tape	8 cm	8 cm	$5~\mathrm{cm}$	$5~\mathrm{cm}$	
tape width	$5.3~\mathrm{mm}$	5.3 mm	4.027 mm	4.062 mm	
substrate thickness	$100~\mu\mathrm{m}$	$100 \ \mu \mathrm{m}$	$50 \ \mu \mathrm{m}$	$100 \ \mu \mathrm{m}$	
cool-down	✓	✓	×	X	
axial -loading	√	√	<i>✓</i>	✓	

^{*} Allen, N. C., L. Chiesa, and M. Takayasu. "Structural modeling of HTS tapes and cables." Cryogenics 80 (2016): 405-418.

Mechanical boundary conditions for Demo tape


- Fixed clamping at one end
- Partially constrained at the bottom

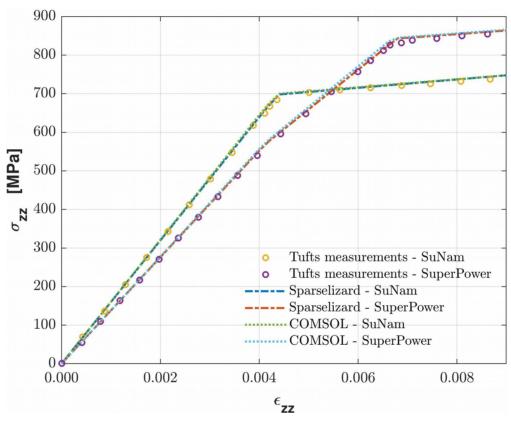
	dimension [m]
L1 : Copper	20×10^{-6}
L2 : Silver	2×10^{-6}
L3: Hastelloy	100×10^{-6}
L4: Buffer	1×10^{-6}
L5: YBCO	2×10^{-6}
L6 : Silver	2×10^{-6}
L7 : Copper	20×10^{-6}
width	5.3×10^{-3}
length	8×10^{-2}


Demo tape (model tape 1) mechanical behavior – strain results

H. Milanchian, et al., "Novel 3D-simulation model for REBCO tape mechanical behaviour", to be submitted to IEEE Trans. On appl. Supercond.

Demo tape (model tape 1) mechanical behavior – stress results

H. Milanchian, et al., "Novel 3D-simulation model for REBCO tape mechanical behaviour", to be submitted to IEEE Trans. On appl. Supercond.

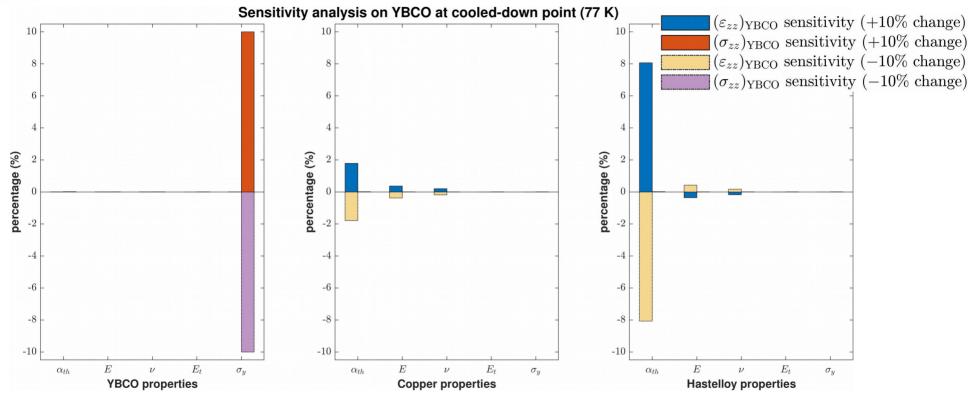

Validation with COMSOL – model tape 2

		: [[botCopper	Hastelloy	YBCO	topCopper
. (%)	cooldown	I $arepsilon_{zz}$ I	0.0946	0.0946	0.0946	0.0946
Error	coolie	I σ_{zz}	0.3240	0.2005	0.0226	0.3124
Relative	arial loading	$arepsilon_{zz}$ l	0.0756	0.0756	0.0756	0.0756
Rela	atial	I σ_{zz}	0.0031	0.0030	0.0734	0.0031

H. Milanchian, et al., "Novel 3D-simulation model for REBCO tape mechanical behaviour", to be submitted to IEEE Trans. On appl. Supercond.

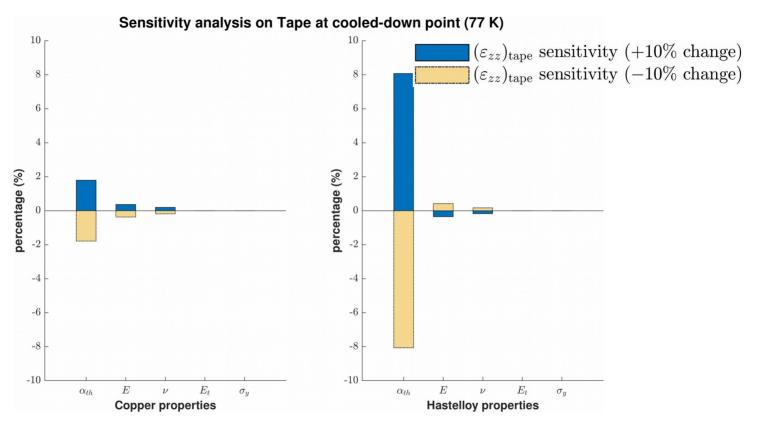
Validation with Tufts measurements - model tapes 3 & 4

Tufts measurement data from: Allen, N. C., L. Chiesa, and M. Takayasu. "Structural modeling of HTS tapes and cables." *Cryogenics* 80 (2016): 405-418. **Comparison in**: H. Milanchian, et al., "Novel 3D-simulation model for REBCO tape mechanical behaviour", to be submitted to IEEE Trans. On appl. Supercond.


כט

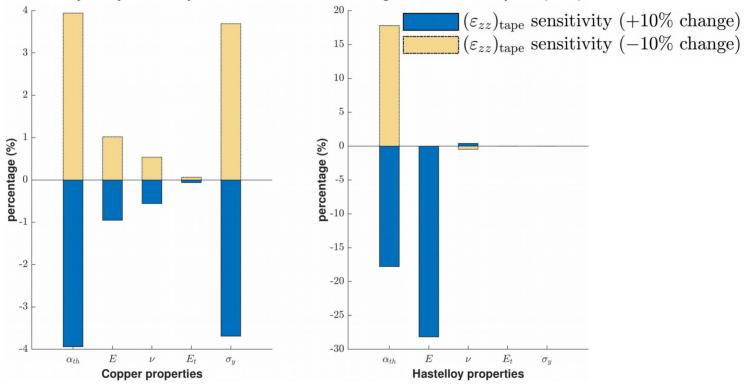
Sensitivity analysis

- Demo tape (model tape 1)
- Investigate the changes in YBCO layer and average Tape strain and stress
- 5 materials: Copper, Silver, Hastelloy, Buffer, YBCO
- 5 material properties: $\underline{\alpha}_{th}, E, \nu, E_T, \sigma_y$
- +10% and -10% change (one property at a time and then compare with reference case)
- 50 different cases
- Sensitivity analysis in Cooled-down point (77 K) and axial loading at 77 K


Sensitivity analysis for cool-down stage

► Silver and Buffer properties had below 1% effect in all cases

Sensitivity analysis for cool-down stage



► YBCO layer properties had below 1% effect in average Tape cases

Sensitivity analysis for Axial loading

Sensitivity analysis on Tape at 700 MPa of axial loading at cooled-down point (77 K)

► Silver, Buffer, YBCO properties (below 1% effect)

YBCO

- $\underline{\alpha}_{th}$ of Hastelloy and Copper (8% and 2%)
- σ_y of YBCO (10% on stress)

Tape

- $\underline{\alpha}_{th}$ of Hastelloy and Copper (18% and 4%)
- *E* of Hastelloy (28%)
- σ_y of Copper (4%)

- Thickness sensitivity analysis
- Elastoplastic behavior of YBCO and Copper

Demo tape material properties

	$\alpha_{ m th}~[imes 10^{-6}]$	E [Gpa]	ν	σ_y [Mpa]	E_T [Gpa]
Copper	17.7	80	0.338	275	4
Silver	17	70	0.367	140	0
Hastelloy	13.4	200	0.307	980	8.5
Buffer	9.5	170	0.226	40	0
YBCO	11	157	0.3	40	0

COMSOL validation tape material properties

	$\alpha_{\mathrm{th}} \ [\times 10^{-6}]$	E [Gpa]	ν	σ_y [Mpa]	E_T [Gpa]
Copper	17.7	80	0.338	275	4
Hastelloy	13.4	200	0.307	980	8.5
YBCO	11	157	0.300	40	0

Tufts tape material properties

	E [Gpa]	ν	σ_y [Mpa]	E_T [Gpa]
Copper	85	0.355	350	4
Substrate (SuperPower)	180	0.29	1225	7.5
Substrate (SuNam)	190	0.29	840	10
$YBCO^1$	150	0.3	-	-

¹ assumed elastic