

OPENSC²: the thermal-hydraulic modelling of SuperConducting Cables moves towards OPEN science

Laura Savoldi, Daniele Placido, Sofia Viarengo

Outline

- I Framework and aim of the work
- Test-Driven Development: 3 case studies
- OPENSC²: a novel object-oriented tool
- Case studies:
 - ITER TF cable
 - HTS cable for fusion
 - HTS cable for power transmission
- OPENSC² repository and collaborative incremental development
- Conclusions and next steps

Framework: tools for TH modelling of fusion cables

Politecnico di Torino	energy
--------------------------	--------

Feature	THEA/SUPERMAGNET	VINCENTA/VENICIA	M&M/4C
Use	Commercial license	Commercial license	Proprietary
Geometry	Arbitrary	Wide range of cases	CICCs with ≤3 channels; some HTS cables (H4C)
Fluids	SHe	He, N ₂ , O ₂ , Ne, H ₂ O	SHe
LTS	Υ	Υ	Υ
HTS	Υ	?	Y (H4C)
Spatial discretization	FEM (adaptive)	3 rd order FDM	1st order FEM (adaptive)
Time integration scheme	3 rd order adaptive multi-step	Semi-explicit splitting-up	Adaptive BE or CN
Pre and post-processing	inner post-processor	Inner pre- and post- processor	Performed with external tools
GUI	Υ	Υ	N
Validation	++	+	+++

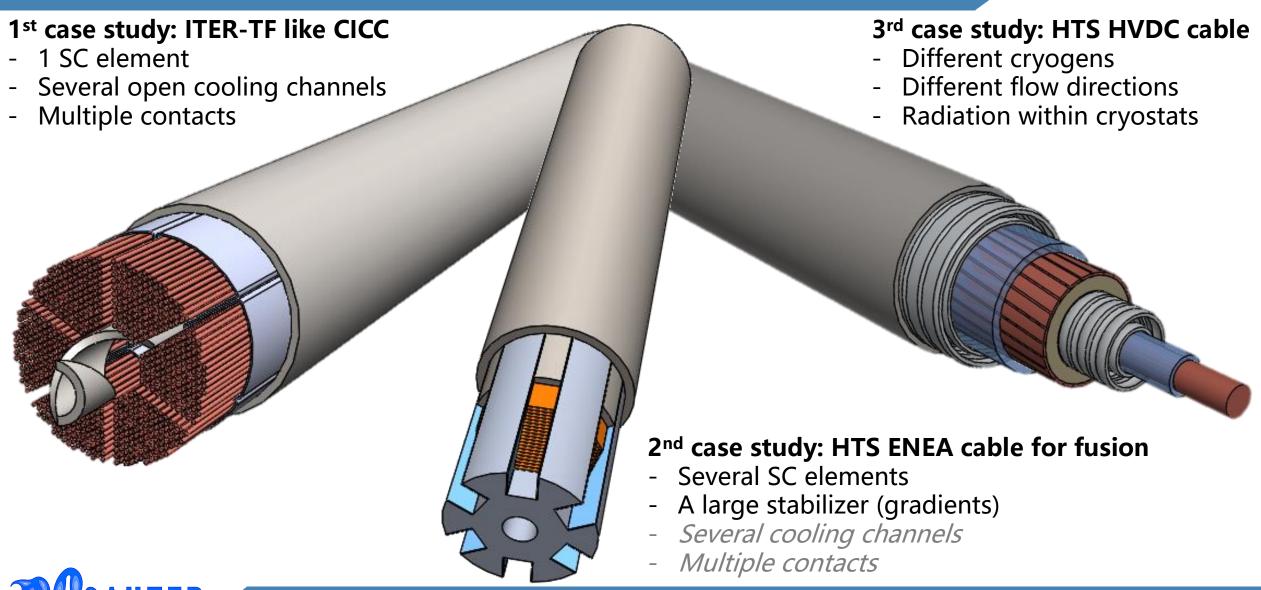
State of the art of TH modelling for SC cables for power transmission \rightarrow

9/23/2021

Open Science and aim of the work

I Twofold motivation to move to Open Science:

The EU's open science policy


Open science is a policy priority for the European Commission and the standard method of working under its research and innovation funding programmes as it improves the quality, efficiency and responsiveness of research.

- Fusion projects as public endeavors
- I AIM = establish a novel cooperative framework for an open-source tool for the numerical modelling of TH transients in SC cablesc, bridging the gap between established tools and a new generation of researchers.

Test-Driven Development: case studies

OPENSC²: a novel object-oriented tool

Object-oriented approach implemented in Python

CLASS

Attributes...

Methods... Methods...

Each conductor object **CO** from class CONDUCTOR

CLASS: CONDUCTOR

Length

Structure *

Connectors among components

Operational attributes Operating scenario

Initialization of components Solution of transient Post-processing

CLASS: SOLIDS

Geometrical attributes

Transient 1D energy conservation law

Material

LIBRARY SOLID MEDIA (open database)

Strand Objects **Jacket Objects** SOs **JOs**

SOs and **JO**s are "children" (instances) of the class SOLIDS

9/23/2021 L. Savoldi, CHTAS-AS

OPENSC²: a novel object-oriented tool

Object-oriented approach implemented in Python

CLASS

Attributes...

Methods...

Fach conductor object CO from class CONDUCTOR

CLASS: CONDUCTOR

Length

Structure ~

Connectors among components

Operational attributes
Operating scenario

Initialization of TH components Solution of transient Post-processing **CLASS: FLUIDS**

Material

Geometrical attributes

1D Mass, momentum and energy conservation laws

Fluid Objects

LIBRARY FLUID MEDIA (Coolprop)

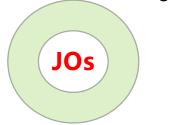
FOs are istances of the class FLUIDS

The tool is intrinsically multi-conductor: several **CO**s can be instantiated simultaneously

OPENSC²: connectors between objects

→ Each CO is assembled using SOs, FOs and Jos, connected through connectors

Object	Interaction	Symbol	Object
so 💮	Thermal by conduction	- \\\\-	so
so 👚	Thermal by conduction	- \\\\-	Olo
JO O	Thermal by conduction	- \\\\-	Olo
JO 🔘	Thermal by radiation	-	Jo
so 👚	Thermal by convection		JO JO
JO O	Thermal by convection		FO
FO C	Thermal through an impermeable surface		FO FO
FO C	Hydraulic and thermal by a permeable surface	4	FO FO


OPENSC²: models for the SOs and JOs

Energy equation: 1D transient heat conduction equations with sources

$$+\sum_{s=1}^{N_{S}} \frac{(T_{s}-T_{i})}{R_{cond,i,s}} + \sum_{j\neq i}^{N_{J}} \frac{(T_{j}-T_{i})}{R_{cond,i,j}} + \sum_{j\neq i}^{N_{J}} \frac{(T_{j}-T_{i})}{R_{rad,i,j}} + \sum_{f=1}^{N_{F}} \frac{(T_{f}-T_{i})}{R_{conv,i,f}}$$

$$-WW$$

OPENSC²: models for the FOs

I For supercritical/gaseous media: 1D mass/momentum/energy conservation laws for an inviscid fluid, rewritten in for the variables v, p, T

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{1}{\rho} \Lambda_{v+\rho}$$

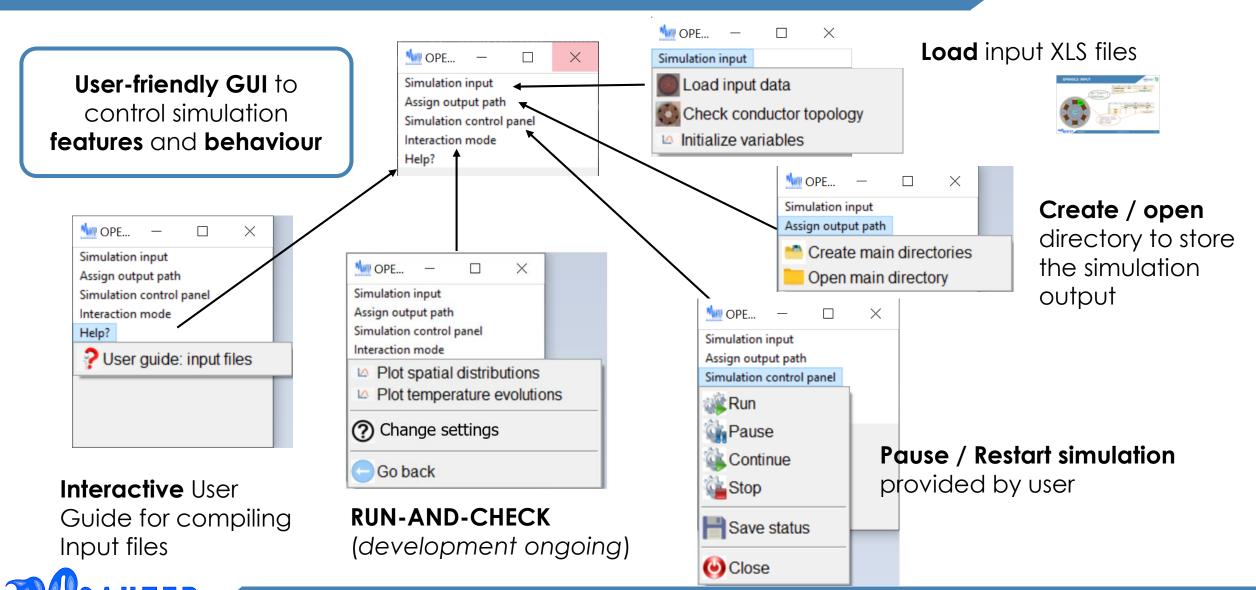
$$\frac{\partial p}{\partial t} + \rho c_s^2 \frac{\partial v}{\partial x} + v \frac{\partial p}{\partial x} = \frac{\Phi}{A} [F + \sum_{s=1}^{N_S} \frac{T_s - T}{R_{cond,i,s}} + \sum_{j=1}^{N_J} \frac{T_j - T}{R_{cond,i,j}} + \sum_{f \neq i}^{N_F} \frac{T_f - T_i}{R_{mix,i,f}} + \sum_{f \neq i}^{N_F} \Lambda_{\rho+v+e}]$$

$$\frac{\partial T}{\partial t} + \Phi T \frac{\partial v}{\partial x} + v \frac{\partial T}{\partial x} = \frac{1}{A\rho c_v} [F + \sum_{s=1}^{N_S} \frac{T_s - T}{R_{cond,i,s}} + \sum_{j=1}^{N_J} \frac{T_j - T}{R_{cond,i,j}} + \sum_{f \neq i}^{N_F} \frac{T_f - T_i}{R_{mix,i,f}} + \sum_{f \neq i}^{N_F} \Lambda_{\rho'+v+e}]$$

Different models for liquid or 2-phase flow still to be implemented

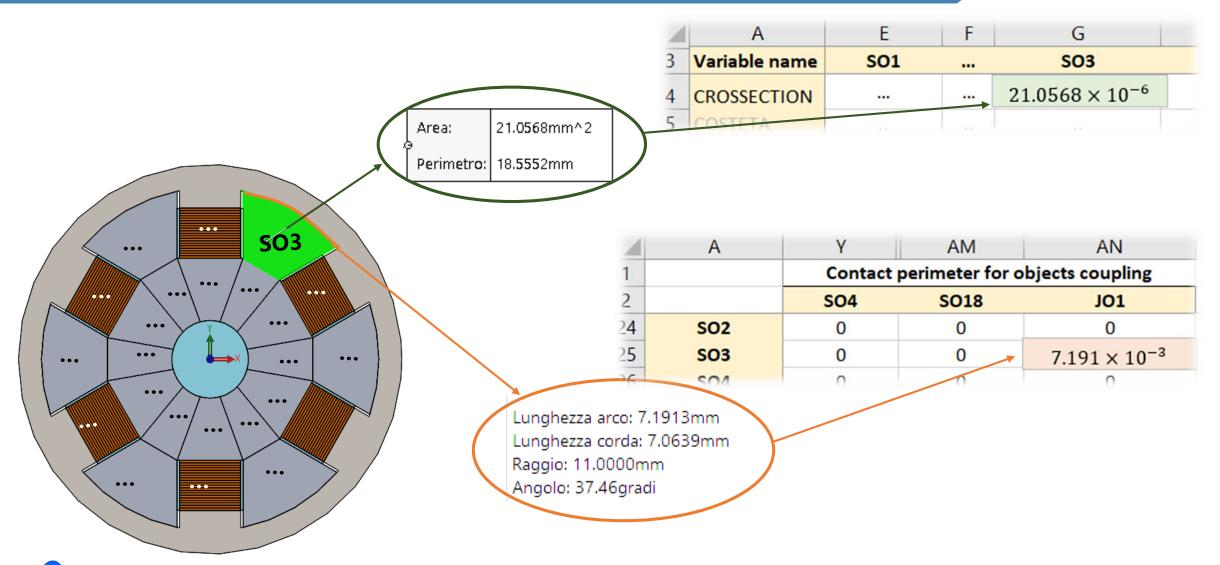
9/23/2021

OPENSC²: numerics

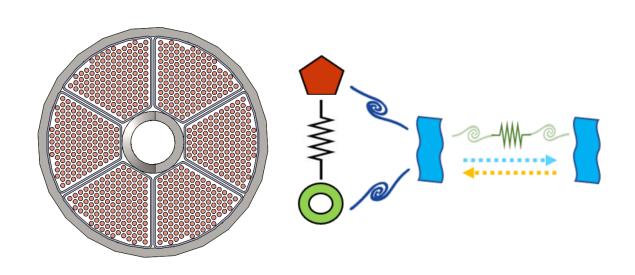

For the time being:

- SOs, JOs: Conservative recipe for the heat capacity of material mixtures
- SOs, JOs & FOs: uniform or non-uniform static grids
 - Coefficients computed at the Gauss point
 - P₁ FE in space for all objects.
- I COs: 1-step integration schemes for time marching, constant time stepping
- Boundary conditions:
 - SOs, JOs: adiabatic at both boundaries
 - FOs: different possible sets for subsonic flow:
 - Impose p_{in}, T_{in}, p_{out}
 - Impose v_{in}, T_{in}, p_{out}(~inlet initial mass flow rate and inlet temperature)

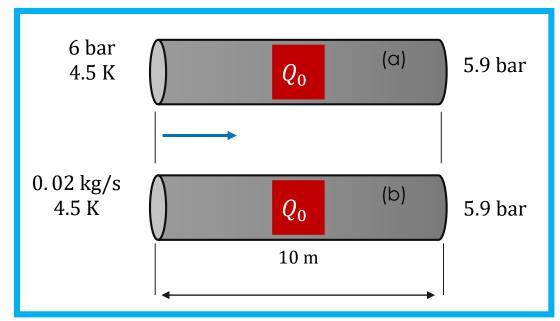
OPENSC²: (graphical) user interface



OPENSC2: INPUT



Case study 1: an ITER TF conductor (1)

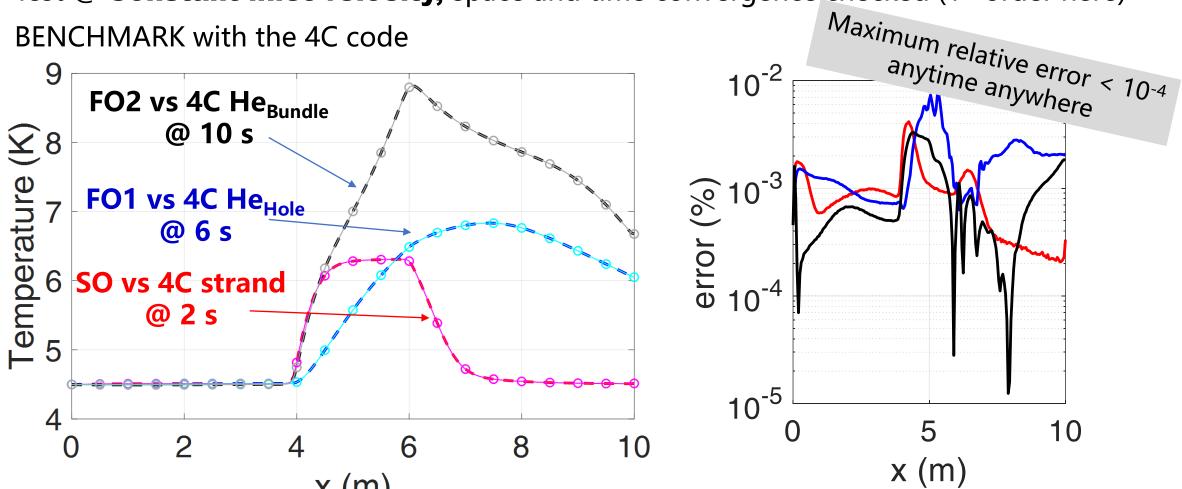


- Heat the central 2 m of the strands with 250 W/m for 10 s.
- Different sets of BCs

Instance of the Conductor class assembled as:

$$CO = 1 SO + 1 JO + 2 FOs$$

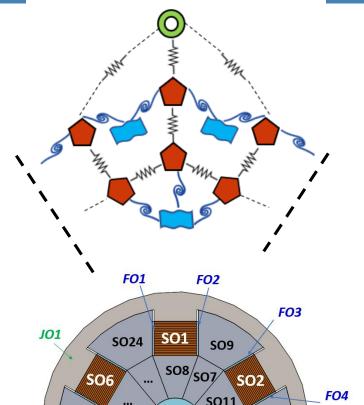
Consider a 10m-long conductor



Case study 1: benchmark with the 4C code

I Test @ Constant inlet velocity, space and time convergence checked (1st order here)

BENCHMARK with the 4C code


L. Savoldi, CHTAS-AS

I Similar pictures for all sets of boundary conditions / drivers tested so far

Case study 2: an HTS cable for fusion

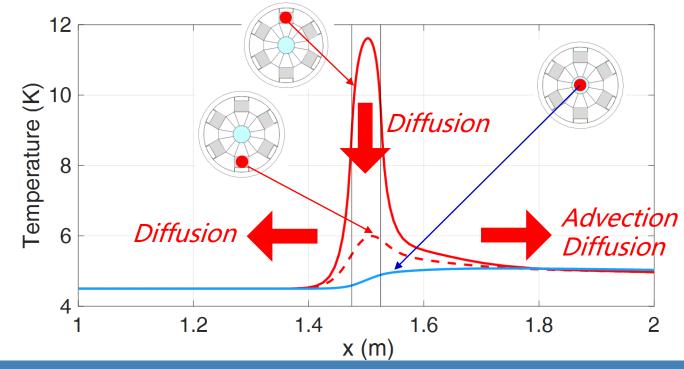
SO10

803

SO14

SO15

SO4


SO12

Instance of the Conductor class assembled as:

$$CO = (18+6) SO + 1 JO + 13 FOs$$

[A. Zappatore at al, IEEE TAS 2020]

Consider a SULTAN-like 3m-long conductor, cooled by 5 g/s of SHe
 4.5 K, 10 bar; heat the central 5 cm of SO1 with 250 W/m for 1 s

SO18

SO21

SO5

F13

Case study 3: an HTS cable for power transmission

$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$

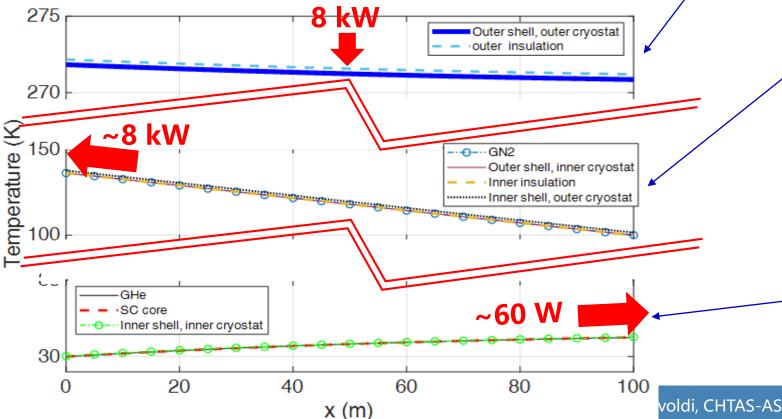
$$CO = 1 SO + 7 JOs + 2 FOs$$

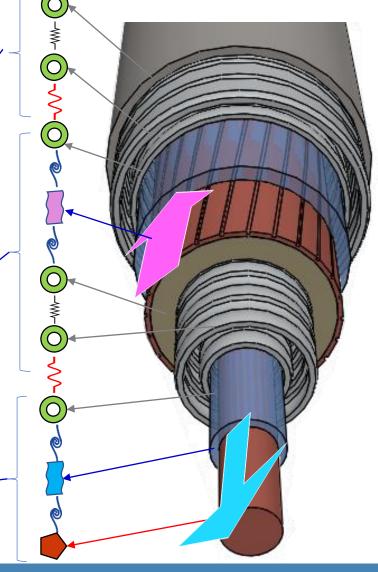
$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$


$$CO = 1 SO + 7 JOs + 2 FOs$$


$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$

$$CO = 1 SO + 7 JOs + 2 FOs$$

I Operating condition under parasitic load from the environment

OPENSC² repository and collaborative incremental development

- Developed in Python version 3.8.6 → inherits the licence of Python and its packages
- Distribution *copyleft* () on GitHub (*)
- I Call to the TH modelers community
 - To carry on benchmarks against their own tools
 - To give feedbacks to the developer team @ PoliTo
 - To identify new needs
 - To contribute to the development of new features

Conclusions and next steps

- Object-oriented open tool for the TH analysis of fusion and power SC cables available soon for researchers, with several functionalities already implemented
- I Test-Driven Development allows successful simulation of different test cases (benchmarked when possible)
- I Framework for collaborative development in place
- Adaptive grid and time stepping under test
- I Coupling to a current diffusion model (resistive-inductive network) coming at MT27
- I Other models for different fluid media under development
- I GUI further improvement, including possible coupling with FreeCAD

