



SWISS PLASMA CENTER Calculation of saturated coupling loss in Rutherford cables

# **Outline**

Nikolay Bykovs

- 1. Introduction
  - Motivation
- 2. Saturated coupling loss
  - Analytical calculation
  - Network modelling
- 3. DEMO CS case study
- 4. Outlook on network modelling
- 5. Conclusion

## Introduction

Development of network models for Rutherford cables:

- 70's, Morgan et al: crossing strand coupling, weak excitation, analytical results
- 80's, Sytnikov et al: crossing and adjacent, weak and strong, analytical
- 90's, Verweij et al: complete numerical electromagnetic model
- 00's p.t.: CUDI / JackPot / THEA / THELMA multi-physics modelling tools
- ❖ LTS have low stability (low MQE), thus must be operated in weak excitation (coupling currents << Ic), therefore leading to small filaments and short twist-pitches.
- In contrast, HTS materials have high stability and could be operated in a strong excitation mode (coupling currents ~ Ic). No need for fine twisted filaments, for example Bi2223 tapes with non-twisted filaments, ReBCO monofilamentary tapes.

Large AC losses should then be properly evaluated and accounted in the design.

Impact of twisting stacks was found marginal for soldered stacks in fusion conductors, while transposing stacks (twisted or not) have a moderate effect, see <a href="https://doi.org/10.1016/j.cryogenics.2020.103118">https://doi.org/10.1016/j.cryogenics.2020.103118</a>

response to constant  $\dot{B}$ 



#### **EPFL**

### **Motivation**

ASTRA conductor concept for DEMO CS coils operated up to 18 T at 5 K, ≥0.1 T/s transients:



- Aligned Stacks Transposed in Roebel Arrangement
- · Jacket pre-compression
- Separate cooling channel (conduction cooled stacks)
- Impregnation of cable space

Strong excitation mode features interplay between coupling current loops and superconducting loops, i.e. corresponding loss contributions are no longer independent.

Furthermore, effects of saturation and screening are counteracting.

Hence, detailed study on the actual AC loss performance is needed.

# **Analytical calculation:** weak excitation

ykovskiy

W  $R_{c}$   $R_{c}$   $R_{c}$   $R_{c}$ 

 $R_{sc} \ll R_c$ : inter-strand loss

$$P_{\perp} = P_{R_{\perp}} + P_{R_{\parallel}} = \frac{\dot{B}^2 H^2 L}{3} \left( \frac{N^2}{20R_{\perp}} + \frac{1}{NR_{\parallel}} \right) \text{ [W/m]}$$

$$H = Nw/2, R_a \sim N/L, R_c \sim N/L \rightarrow$$

$$P_c \sim N^3 L^2, \qquad P_a \sim NL^2$$

https://doi.org/10.1016/0011-2275(89)90207-5



 $\rightarrow$   $R_{sc}$  increases with L,  $R_c$  decreases with L:

Limit of the model applicability in terms of the cable twist-pitch?

$$\varepsilon = \dot{B}wL_c \approx I_cR \sim \rho I_c/L_c \rightarrow L_c \sim \sqrt{\rho I_c/\dot{B}w}$$
 (e.g. missing geometry factor)

Geometry: slab (see Wilson's book, section 8.3.1)

$$L_c = \sqrt{\frac{8\rho I_c}{\dot{B}w}}$$



Geometry: Rutherford cable

$$L_c \approx \sqrt{\frac{96\rho I_c}{N\dot{B}w}}$$

### **EPFL**

# **Analytical calculation:** strong excitation



 $R_{sc} \gg R_c$ : saturated loss

$$\varepsilon = \dot{B}xl \approx E_c l(I/I_c)^n$$

$$I = I_c (\dot{B}x / E_c)^{1/n}$$

$$P_1/l = E \cdot I = E_c I_c (I/I_c)^{n+1}$$

$$= E_c I_c (\dot{B}x/E_c)^{1+1/n} \text{ [W/m]}$$



Perpendicular field (2 layers):

$$P_N/l = \sum P_1(x)/l = E_c I_c \left(\frac{\dot{B}w}{E_c}\right)^{1+\frac{1}{n}} F(N)$$

$$F(N) = 4 \cdot \sum_{k=0 \text{ or } 1/2}^{(N-2)/4} k^{1+\frac{1}{n}} \qquad (\min N = 4)$$



Parallel field (N/2 layers):

$$P_N/l = E_c I_c \left(\frac{\dot{B}h}{2E_c}\right)^{1+\frac{1}{n}} N$$

Critical-state model ( $n = \infty$ ):

$$P/l = I_c w \dot{B} N^2/8$$
 in perp field

$$P/l = I_c h \dot{B} N/2$$
 in parr field

or simply

$$P/l = I_{c\_total} \times width \times \dot{B}/4$$



$$I_{c\_total} = N \times I_c$$

Generally, higher loss for finite n-value and same lc:

 $P/l \sim \dot{B}^2 N^3$  for n=1 in perp field

### **EPFL**

# **Network modelling:** integral formulation

| Model parameters      |                        |                                      |                     |  |  |
|-----------------------|------------------------|--------------------------------------|---------------------|--|--|
| Category              | Symbol                 | Description Value                    |                     |  |  |
| Geometry              | N                      | Number of strands                    | 4 – 40              |  |  |
|                       | W                      | Strand width                         | 8 mm                |  |  |
|                       | Н                      | Strand height                        | 4 mm                |  |  |
|                       | $\boldsymbol{L}$       | Cable twist-pitch                    | 0.1 m – inf         |  |  |
| Electrical properties | ρ                      | Trans. specific resistance           | $1-100~\mu\Omega.m$ |  |  |
|                       | $I_c$                  | Critical current                     | (strand props)      |  |  |
|                       | n                      | Index of transition                  | 1 – 1000            |  |  |
| Operating conditions  | B                      | Ramp rate of external magnetic field | 0.01 – 1 T/s        |  |  |
|                       | $\boldsymbol{\varphi}$ | Field orientation                    | 0 – 90 deg          |  |  |
|                       | $I_{op}$               | Operating current                    | 0 to Ic             |  |  |



Find *current distribution* by solving:

- Kirchhoff current law for each node (yellow points)
- Kirchhoff voltage law for each elementary circuit
- Conservation of total operating current
- Specified boundary conditions:
- 1. Dirichlet type: fixed input/output currents (i.e. 'insulated' strands outside the modeling region)

https://doi.org/10.1016/j. cryogenics.2018.10.003

- 2. Neumann type: fixed current derivatives (zero derivatives → equipotential ends, i.e. short-circuited strands)
- 3. Periodic type: account for symmetry in current distribution (suitable to model infinitely long transposed strands) >

# **Network modelling:** setup and benchmark



Length = 1 twist-pitch / N



Using periodic BC, L/N–long segment is sufficient for fast analysis w/o accuracy loss.





$$\rightarrow$$
  $P = \sum I^2 R/l \text{ [W/m] } Q = \int Pdt \text{ [J/m]}$ 

Note: intra-strand loss neglected



The model is validated wrt analytical solutions.

#### **EPFL**

# **Network modelling:** power loss

Study on twist-pitch:



 Power loss at the critical value of twistpitch ~ 50-70% of the saturated loss Study on critical twist-pitch:





Typically, n~10-20 for fusion conductors, thus its impact on  $L_c$  some 20 - 30%



 $L_c \sim N^{-0.5}$  scaling:

less strands -> higher  $L_c$  -> lower P inter-strand, but higher P intra-strand

#### **EPFL**

# **Network modelling:** energy loss











| Mode            | $I \ll I_c$                   | $I \sim I_c$     |  |
|-----------------|-------------------------------|------------------|--|
| $ u \ll 1/	au $ | Weak excitation: $Q \sim \nu$ | Saturation:      |  |
| $ u \gg 1/	au $ | Screening: $Q \sim 1/\nu$     | $Q \sim v^{1/n}$ |  |

Time constant:

$$\tau \sim \mu_0 L^2/\rho$$

- Typical AC loss cycles studied at zero transport current.
- However, changing of both transport current and produced magnetic field should be analyzed for actual coil operation ->

#### **EPFL**

# **DEMO CS graded coils:** quick overview

Target: 60 kA / 18 T / 5 K, pulsed operation



R&D on HTS conductors for DEMO CS started this year: 4 concepts by SPC, ENEA and KIT; performance demonstration before 2024



#### Baseline 12 T DEMO CS:

| Parameter (Symbol)                                | Unit | MIRA | PROCESS |
|---------------------------------------------------|------|------|---------|
| Time to recharge the CS $(\tau_{RC})$             | [s]  | 363  | 30      |
| Pump-down time $(\tau_{PD})$                      | [s]  | 1800 | 1800    |
| Time for CS recharge/pump-down ( $\tau_{RC/PD}$ ) | [s]  | 1800 |         |
| Ramp-up time $(\tau_{RU})$                        | [s]  | 157  | 30      |
| Heating time $(\tau_{heat})$                      | [S]  | 19   | 10      |
| Burn time $(\tau_{burn})$                         | [s]  | 4768 | 7200    |
| Time for burn termination $(\tau_{BT})$           | [S]  | 123  |         |
| Flat-top time $(\tau_{flat})$                     | [s]  | 4909 | 7230    |
| Ramp-down time $(\tau_{RD})$                      | [S]  | 157  | 30      |
| Dwell time $(\tau_{dwell})$                       | [s]  | 2256 | 1890    |
| Total cycle duration (Taurla)                     | [s]  | 7024 | 9103    |

- Operating cycle in pulsed tokamaks: advanced 18 T CS graded coils allow increasing burn time, thus higher plant availability by ~10-20% compared to 12 T baseline option.
- Coils operated independently, but detailed scenario not yet specified.

Assuming 15 T sweep for RU:

| Bdot    | RU      | Flat-top  | RD      |  |
|---------|---------|-----------|---------|--|
| MIRA    | 0.1 T/s | 0.004 T/s | 0.1 T/s |  |
| PROCESS | 0.5 T/s | 0.003 T/s | 0.6 T/s |  |

https://dx.doi.org/10.5445/IR/1000095873

**EPFL** 

# **DEMO CS graded coils:** power loss estimates

| CS module                                | CS3L                       | CS2L                    | CS1                        | CS2U                    | CS3U                       |
|------------------------------------------|----------------------------|-------------------------|----------------------------|-------------------------|----------------------------|
| Most demanding operating conditions      | PREMAG:<br>14.66 T / 70.1° | EOF:<br>12.59 T / 70.1° | PREMAG:<br>18.14 T / 83.7° | EOF:<br>13.16 T / 70.3° | PREMAG:<br>15.03 T / 70.2° |
| # of 3.3 mm tapes (aligned along z-axis) | ~220                       | ~200                    | ~140                       | ~200                    | ~220                       |
| P max for L ~ 1 m                        | ≈ 2.2 W/m                  | ≈ 1.7 W/m               | ≈ 1.1 W/m                  | ≈ 1.9 W/m               | ≈ 2.4 W/m                  |
| P max for L >> 1 m                       | ≈ 110 W/m                  | ≈ 80 W/m                | ≈ 60 W/m                   | ≈ 90 W/m                | ≈ 120 W/m                  |

For non-transposed strands,  $\sim \! 100$  W/m applied to strands may increase their temperature above 10 K, thus need for higher  $T_{cs}$ .

Strands transposition may reduce losses by about 10 times.

2.4 W/m + intra-strand loss = 10-20 W/m?



Operating current  $\sim B$  during the cycle



Intra-strand loss should be accounted...



Intra-strand loss is negligible

# Outlook on network modelling







HTS stacked tapes strand







### **EPFL** Conclusion

- Analytical and numerical models are developed to analyze saturated coupling loss in Rutherford cables.
- Relatively low loss is obtained by keeping twist-pitch below its critical value expressed as  $L_c \approx \sqrt{96\rho I_c / N\dot{B}w}$ .
- Transposition of strands is needed to avoid their overheating during fast transients in the DEMO CS coils.
- Network modelling approach is being used to simulate electromagnetic behavior of various cable layouts.



THANK YOU FOR YOUR ATTENTION!