

Measurement and gyrokinetic simulations of zero-frequency fluctuations generated by coupling between Alfvén modes in the JET tokamak

J. Ruiz Ruiz¹, J. Garcia², M. Barnes¹, M. Dreval³, V. Duarte⁹, C. Giroud⁴, V.H. Hall-Chen⁵, M. Hardman⁶, J.C. Hillesheim⁷, Y. Kazakov⁸, S. Mazzi², F.I. Parra⁹, B. Patel⁵, A. Schekochihin¹, Z. Stancar⁵

1. Oxford 2. CEA 3. KIPT 4. UKAEA 5. A*STAR 6. Tokamak Energy 7. CFS 8. LPP-ERM/KMS 9. PPPL

18th Technical Meeting on Energetic Particles in Magnetic Confinement Systems
Sevilla, March 18, 2025

Why care about fast ions, Alfvén modes and turbulence?

- Supra-thermal particles will be ubiquitous in upcoming burning plasmas.
- Originate in plasma heating, or fusion reaction (D + T $\rightarrow \alpha + n$): very common !!
- Fast ions (FI) can excite MHD/Alfvén instabilities¹.
 - → Deleterious for plasma confinement due to large fast particle transport²

- Presence of Alfvén eigenmodes (AEs) not always deleterious
 - GK simulations³ have shown that AEs driven by fast ions can stabilize turbulence
 - Todo NF 2010/2012 (MHD): AEs can generate a zero-frequency zonal perturbation⁴

TAE+TAE → ZF
TAE+TAE → sidebands

- > zero-frequency zonal perturbation could interact with and stabilize turbulence
- Zero-frequency fluctuation driven by AEs lacks experimental confirmation
- [1] Rosenbluth PRL 1975

Why care about fast ions, Alfvén modes and turbulence?

- Supra-thermal particles will be ubiquitous in upcoming burning plasmas.
- Originate in plasma heating, or fusion reaction (D + T $\rightarrow \alpha + n$): very common !!
- Fast ions (FI) can excite MHD/Alfvén instabilities¹.
 - → Deleterious for plasma confinement due to large fast particle transport²

- Presence of Alfvén eigenmodes (AEs) not always deleterious
 - GK simulations³ have shown that AEs driven by fast ions can stabilize turbulence
 - Todo NF 2010/2012 (MHD): AEs can generate a zero-frequency zonal perturbation⁴

TATITAT Vaidabanda

We show the first experimental confirmation of a zero-frequency fluctuation that is pumped by an Alfvén eigenmode in a magnetically-confined plasma⁵

Zero-frequency fluctuation driven by AEs lacks experimental confirmation

[1] Rosenbluth PRL 1975

[2] Heidbrink PoP 2008/2020

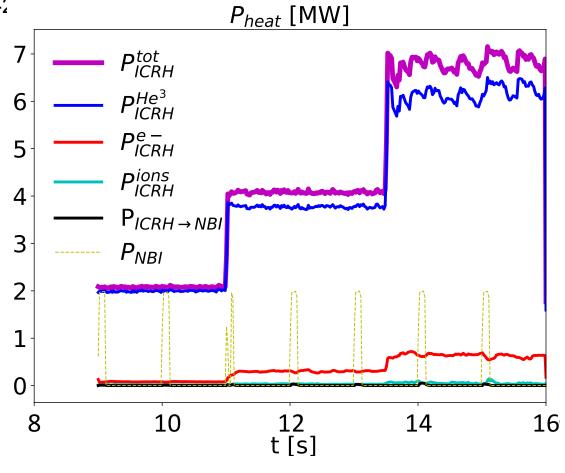
[3] DiSiena NF 2019, Biancalani PPCF 2021/JPP 2023, Mazzi Nat Phys 2022

[4] Spong PoP 1994, Chen PRL 2012, Qiu NF 2017

[5] Ruiz Ruiz *et al*. PRL 2025

Outline

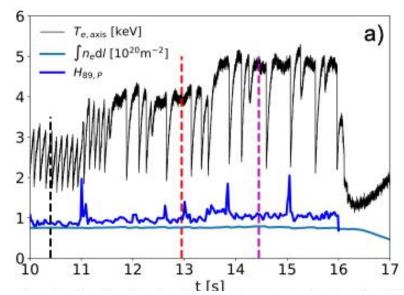
Experimental observations

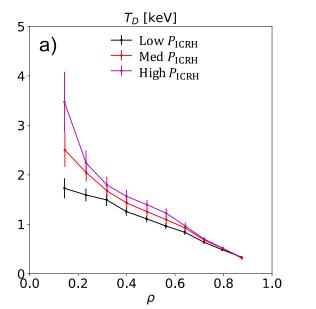

- JET plasma with MeV-range ICRF-heated ions
- Alfvénic activity (TAE)
- Doppler backscattering (DBS) measurements
 - Power spectrum and bicoherence analysis (Ruiz Ruiz PRL 2025)

Gyrokinetic modelling

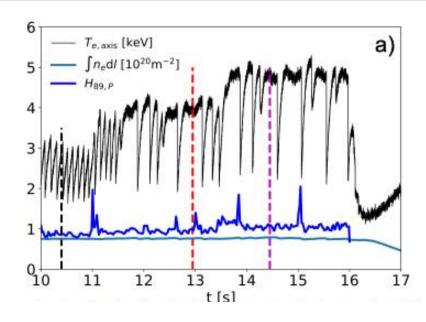
- Local nonlinear simulations (TAE+ITG)
 - Effect on thermal transport
 - Bicoherence analysis

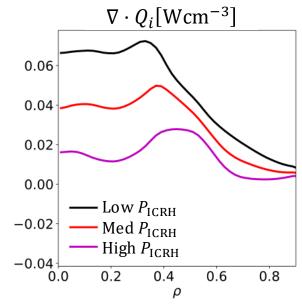
JET 97090 L-mode heated with ICRF produces MeV range 3He that slows down on electrons


- L mode, I_p =2.4 MA, B_0 =3.2 T, $\bar{n}_{e,l}=7\times10^{19} \mathrm{m}^{-2}$
- ICRF heating (no NBI) steps:
 - 2 MW (low), 4 MW (medium) and 7 MW (high)
- H+D (background), ~0.2% trace 3He → 4-5
 MeV [*]
- Fast 3He slows down on e- (>90% heating)
- → Almost pure electron heating plasma via slowing down of 3He mimic conditions of 3.5 MeV alpha particles in a burning plasma


Confinement improves and ion temperature increases with ICRH power

- Core electron temperature T_e increases as expected
- L-mode confinement factor $H_{89,P}$ increases (consistent with [*]) \rightarrow confinement improvement


- Ion temperature ALSO increases in deep core -- puzzle
 - e- and ions more collisionally decoupled as T_e increases
 - No T_i clamping [**]
 - Ion turbulence is stabilized?

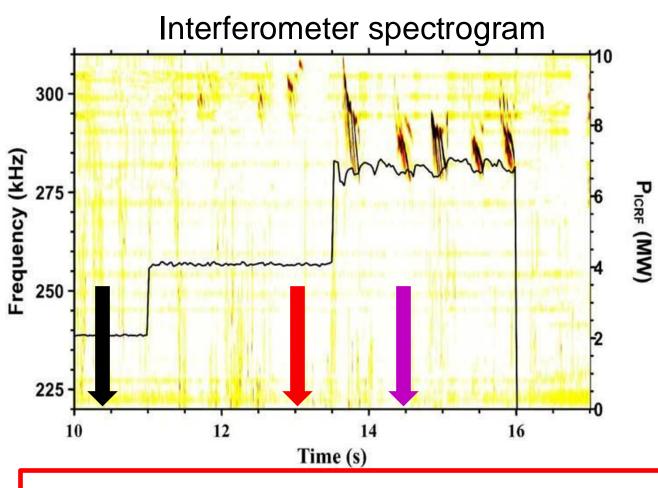

Confinement improves and ion temperature increases with ICRH power

- Core electron temperature T_e increases as expected
- L-mode confinement factor $H_{89,P}$ increases (consistent with [*]) \rightarrow confinement improvement

- Ion temperature ALSO increases in deep core -- puzzle
 - e- and ions more collisionally decoupled as T_e increases
 - No T_i clamping [**]
 - Ion turbulence is stabilized?
 - \rightarrow Decrease in Q_i ($Q_e > Q_i$, TRANSP)

Outline

Experimental observations


- JET plasma with MeV-range ICRF-heated ions
- Alfvénic activity (TAE)
- Doppler backscattering (DBS) measurements
 - Power spectrum and bicoherence analysis (Ruiz Ruiz PRL 2025)

Gyrokinetic modelling

- Linear instability: Alfvénic mode consistent with TAE
- Nonlinear simulations (TAE+ITG)
 - Effect on thermal transport
 - Bicoherence analysis

Increase in T_i and thermal confinement is correlated with increased MHD activity observed with increasing ICRH power

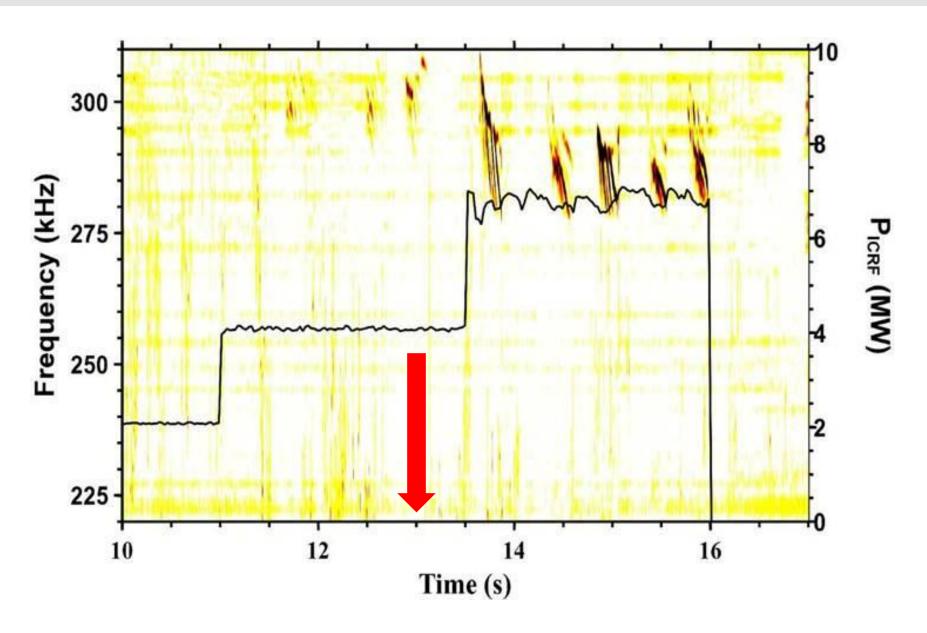
- Low ICRH power similar to Ohmic
- Medium ICRH power close to marginal stability of MHD modes
- High ICRH power MHD activity (TAE)
 - $f \approx 270 300 \text{ kHz}$ $(f_{\text{TAE}} \approx v_A/4\pi qR \approx 270 - 300 \text{ kHz})$
 - $n \approx 4 6$

- Electron heating (MeV-range fast ions)
- Improved ion confinement $(T_i, H_{89,P})$ increase
- TAE activity

Motivate local turbulence measurements via Doppler Backscattering (DBS)

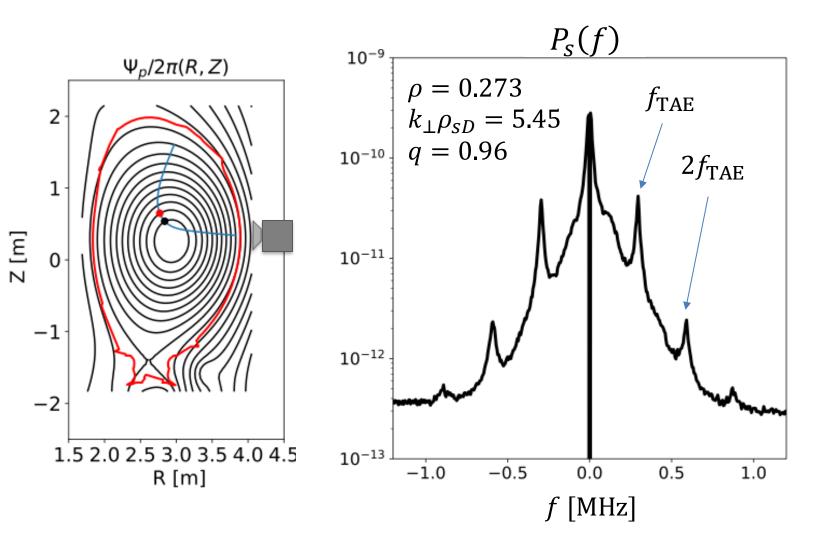
Outline

Experimental observations

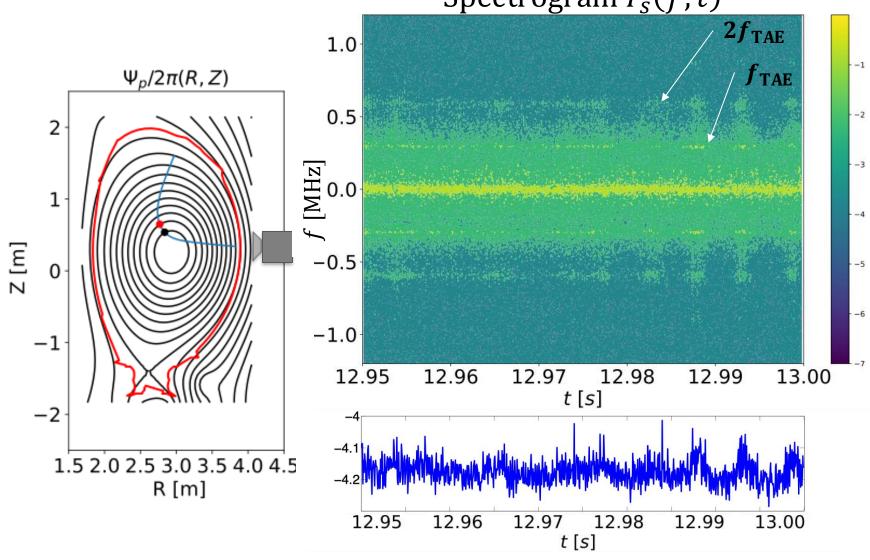

- JET plasma with MeV-range ICRF-heated ions
- Alfvénic activity (TAE)
- Doppler backscattering (DBS) measurements
 - Power spectrum and bicoherence analysis (Ruiz Ruiz PRL 2025)

Gyrokinetic modelling

- Linear instability: Alfvénic mode consistent with TAE
- Nonlinear simulations (TAE+ITG)
 - Effect on thermal transport
 - Bicoherence analysis


DBS measurements at medium ICRH power

At medium P_{ICRH} , DBS beam reaches deep core, spectrogram exhibits periodic bursts and spectral peaks at gap frequency f_{TAE} and harmonics



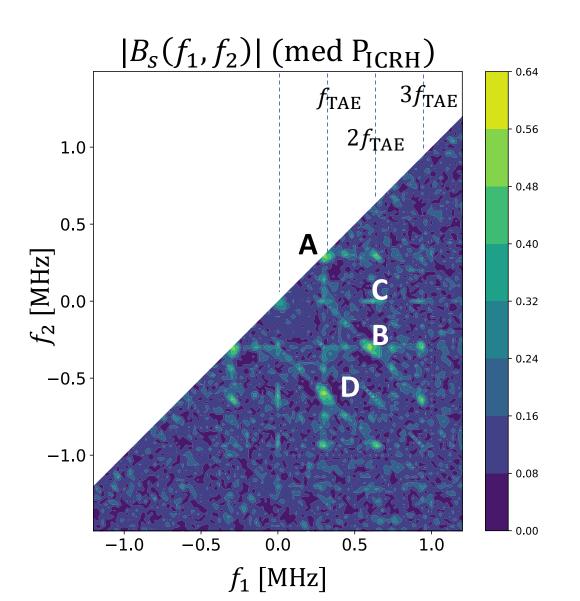
- $f_{\mathrm{TAE}} \approx v_A/4\pi qR \approx 270 300 \,\mathrm{kHz}$
- Spectral peaks at f_{TAE} , $2f_{TAE}$, $3f_{TAE}$

At medium P_{ICRH} , DBS beam reaches deep core, spectrogram exhibits periodic bursts and spectral peaks at gap frequency f_{TAE} and harmonics

Spectrogram $P_s(f,t)$

- $f_{\mathrm{TAE}} \approx v_A/4\pi qR \approx 270 300 \text{ kHz}$
- Spectral peaks at f_{TAE} , $2f_{TAE}$, $3f_{TAE}$
- Presence of TAEs (near q=1, tornado TAEs [*]) that burst every $\Delta t \approx 6 7 \text{ ms}$

At medium P_{ICRH} , DBS beam reaches deep core, spectrogram exhibits periodic bursts and spectral peaks at gap frequency f_{TAE} and harmonics



- $f_{\text{TAE}} \approx v_A/4\pi qR \approx 270 300 \text{ kHz}$
- Spectral peaks at f_{TAE} , $2f_{TAE}$, $3f_{TAE}$
- Presence of TAEs (near q=1, tornado TAEs [*]) that burst every $\Delta t \approx 6 7 \text{ ms}$
 - Are higher gap modes sidebands?
- Faint effect on turbulence?

At medium P_{ICRH} , bicoherence exhibits three-wave matching relations at f_{TAE} , $2f_{TAE}$, $3f_{TAE}$ and a zero-frequency fluctuation

•
$$|B_S(f_1, f_2)| = \frac{\langle \hat{A}_j(f_1) \hat{A}_j(f_2) \hat{A}_j(f_1 + f_2)^* \rangle}{\langle |\hat{A}_j(f_1) \hat{A}_j(f_2)|^2 \rangle^{\frac{1}{2}} \langle |\hat{A}_j(f_1 + f_2)|^2 \rangle^{\frac{1}{2}}}$$

- \rightarrow three-wave phase matching relationship between f_1 and f_2 such that $f_1 \pm f_2 = f_3$ [*]
- Mode-mode interactions (sidebands!):

$$(f_1, f_2) =$$

 $\mathbf{A}: (f_{TAE}, f_{TAE}) \rightarrow 2f_{TAE}$

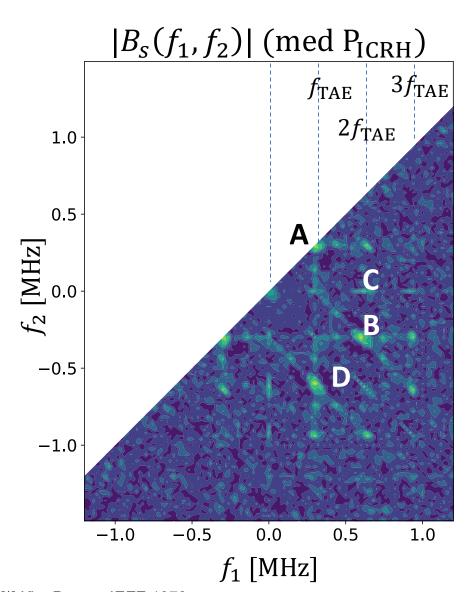
B: $(2f_{\text{TAE}}, -f_{\text{TAE}}) \rightarrow f_{\text{TAE}}$

Interaction with a zero-frequency fluctuation:

$$(f_1, f_2) =$$

C: $(2f_{\text{TAE}}, 0) \rightarrow 2f_{\text{TAE}}$

D:
$$(2f_{TAE}, -2f_{TAE}) \to 0$$

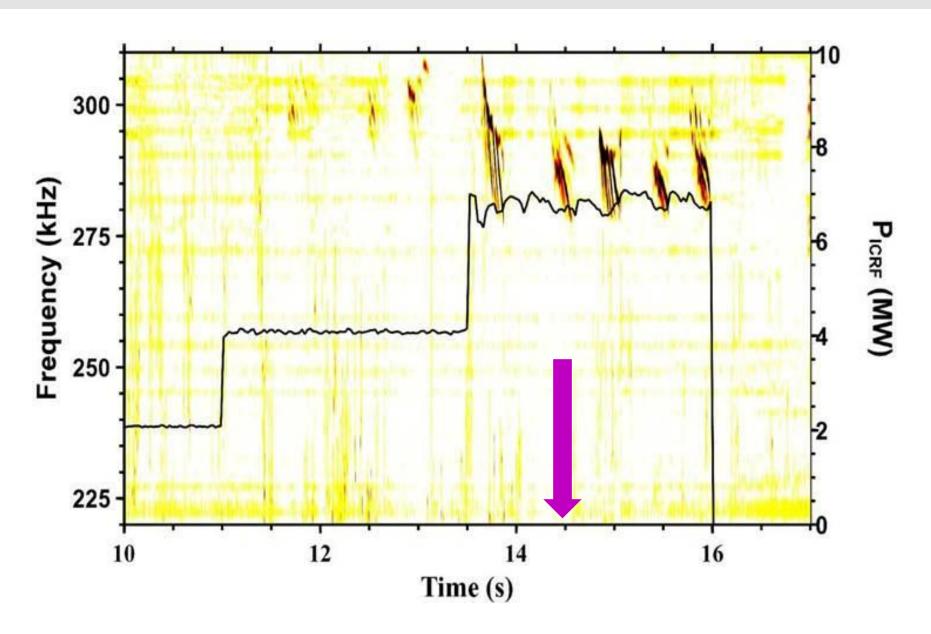

At medium P_{ICRH} , bicoherence exhibits three-wave matching relations at f_{TAE} , $2f_{TAE}$, $3f_{TAE}$ and a zero-frequency fluctuation

0.56

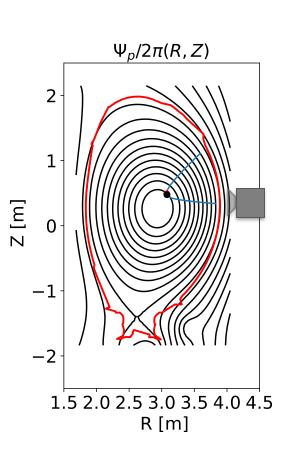
0.48

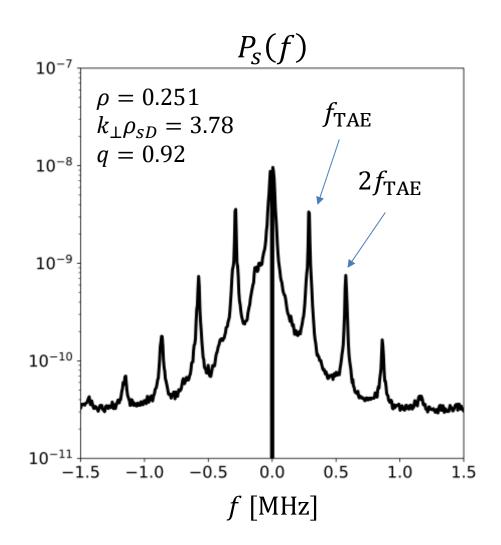
0.32

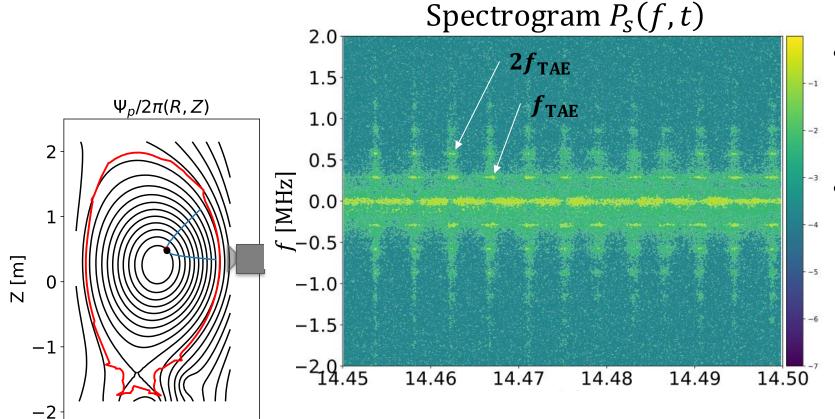
•
$$|B_S(f_1, f_2)| = \frac{\langle \hat{A}_j(f_1) \hat{A}_j(f_2) \hat{A}_j(f_1 + f_2)^* \rangle}{\langle |\hat{A}_j(f_1) \hat{A}_j(f_2)|^2 \rangle^{\frac{1}{2}} \langle |\hat{A}_j(f_1 + f_2)|^2 \rangle^{\frac{1}{2}}}$$


- \rightarrow three-wave phase matching relationship between f_1 and f_2 such that $f_1 \pm f_2 = f_3$ [*]
- Mode-mode interactions (sidebands!):

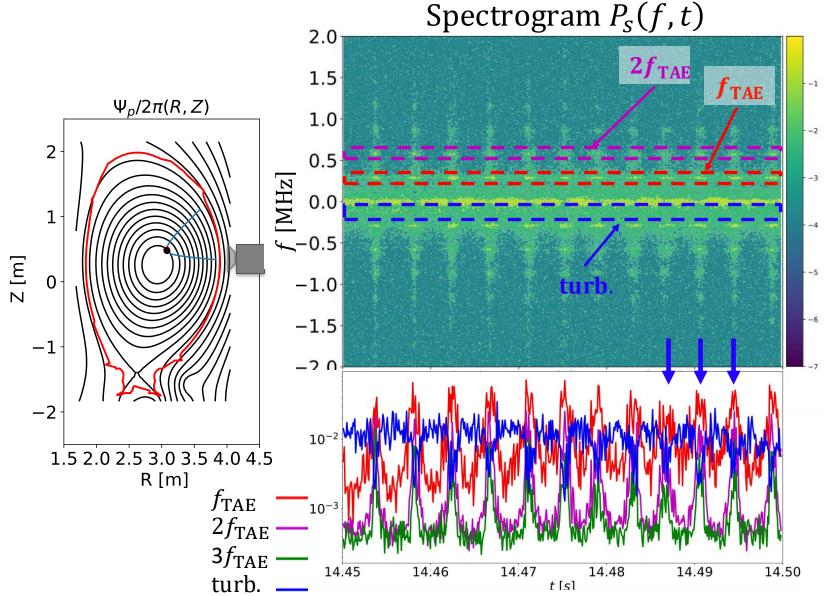
$$(f_1, f_2) =$$
 A: $(f_{TAE}, f_{TAE}) \rightarrow 2f_{TAE}$
B: $(2f_{TAE}, -f_{TAE}) \rightarrow f_{TAE}$


To our knowledge: first experimental measurement of three-wave phase matching relationship between Alfvénic modes and a zero-frequency fluctuation in a magnetically confined plasma

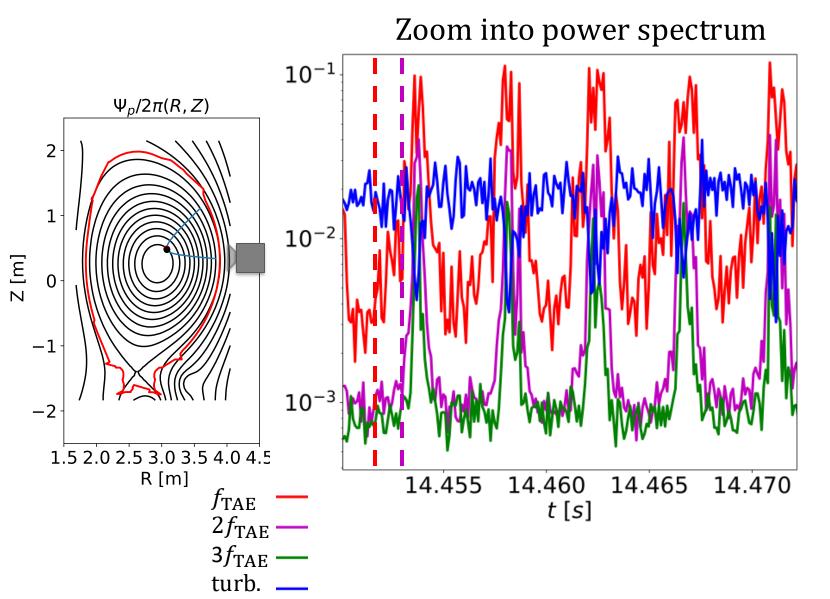

DBS measurements at high ICRH power



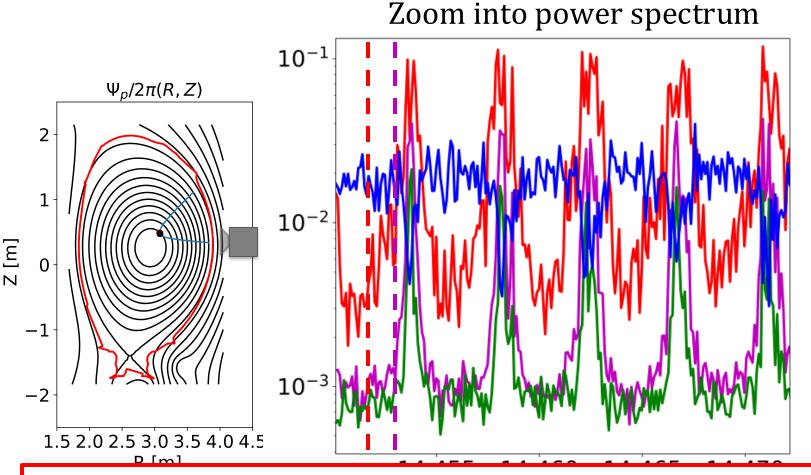
• Modes in higher gaps (up to $5f_{\rm TAE}$) inside q=1 surface (and persist outside)



1.5 2.0 2.5 3.0 3.5 4.0 4.5 R [m]


- Modes in higher gaps (up to $5f_{\rm TAE}$) inside q=1 surface (and persist outside)
- Bursts of the Alfvénic modes $(\Delta t \approx 4 \text{ ms})$. Are higher gap modes sidebands?

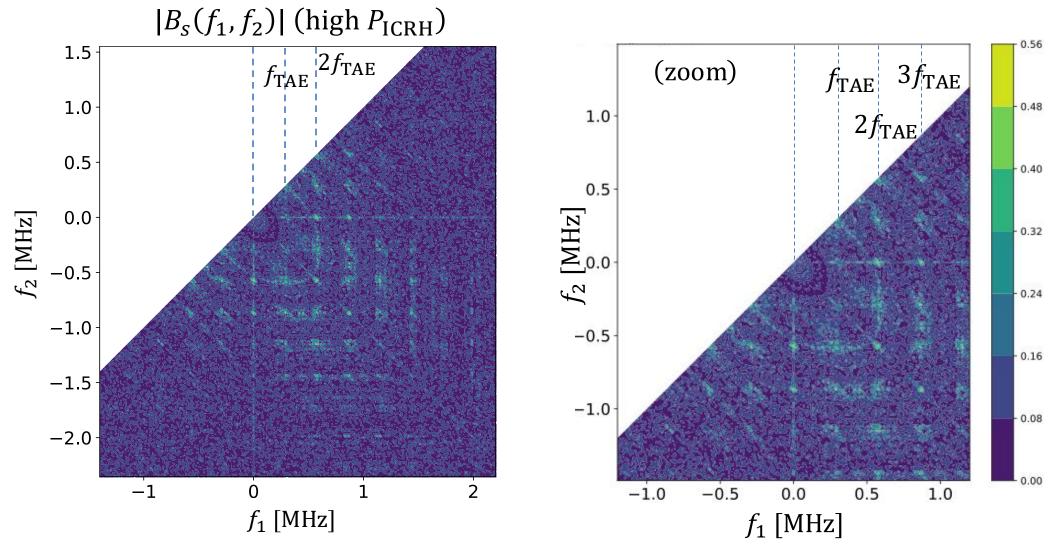
- Modes in higher gaps (up to $5f_{\rm TAE}$) inside q=1 surface (and persist outside)
- Bursts of the Alfvénic modes $(\Delta t \approx 4 \text{ ms})$. Are higher gap modes sidebands?
- Power in turbulence frequencies (f < 200 kHz) decreases during bursts (predator-prey behavior?)



- Modes in higher gaps (up to $5f_{\rm TAE}$) inside q=1 surface (and persist outside)
- Bursts of the Alfvénic modes $(\Delta t \approx 4 \text{ ms})$. Are higher gap modes sidebands?
- Power in turbulence frequencies (f < 200 kHz) decreases during bursts (predator-prey behavior?)
- Causality: fundamental TAE
 precedes higher gap modes
 & turb. stabilization

At high P_{ICRH}, the DBS spectrogram in deep core exhibits frequent

periodic bursts of Alfvénic modes and multiple harmonics of $f_{\rm TAE}$



- Modes in higher gaps (up to $5f_{TAE}$) inside q=1 surface (and persist outside)
- Bursts of the Alfvénic modes $(\Delta t \approx 4 \text{ ms})$. Are higher gap modes sidebands?
- Power in turbulence frequencies (f < 200 kHz) decreases during bursts (predator-prey behavior?)

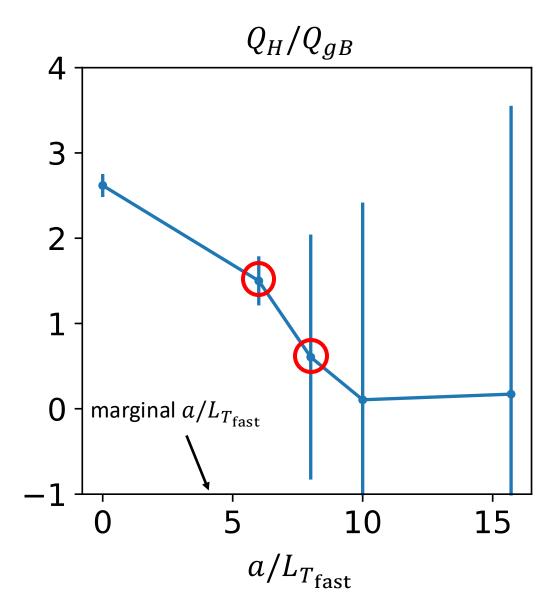
TAE in fundamental gap f_{TAE} precedes modes in higher gaps and turbulence stabilization → suggests predator-prey behavior TAE-turbulence-(zonal flow)

The DBS bicoherence shows that the strongest phase-matching interactions involve f = 0. Observe mode-mode interactions up to $7f_{\rm TAE}$

• Strongest interactions involve $(2f_{TAE}, 0)$ and $(3f_{TAE}, 0)$, not $(f_{TAE}, 0)$

Outline

Experimental observations


- JET plasma with MeV-range ICRF-heated ions
- Alfvénic activity (TAE)
- Doppler backscattering (DBS) measurements
 - Power spectrum and bicoherence analysis (Ruiz Ruiz PRL 2024)

Gyrokinetic modelling

- Local nonlinear simulations (AE+ITG)
 - Effect on thermal transport
 - Bicoherence analysis

Local nonlinear CGYRO for high P_{ICRH}: turbulence is stabilized when the AE is driven unstable

- Electromagnetic $(\delta \phi, \delta A_{||})$, fast-Maxwellian 3He $(T_f \approx 168 \ T_i)$
- AE+ITG scales:

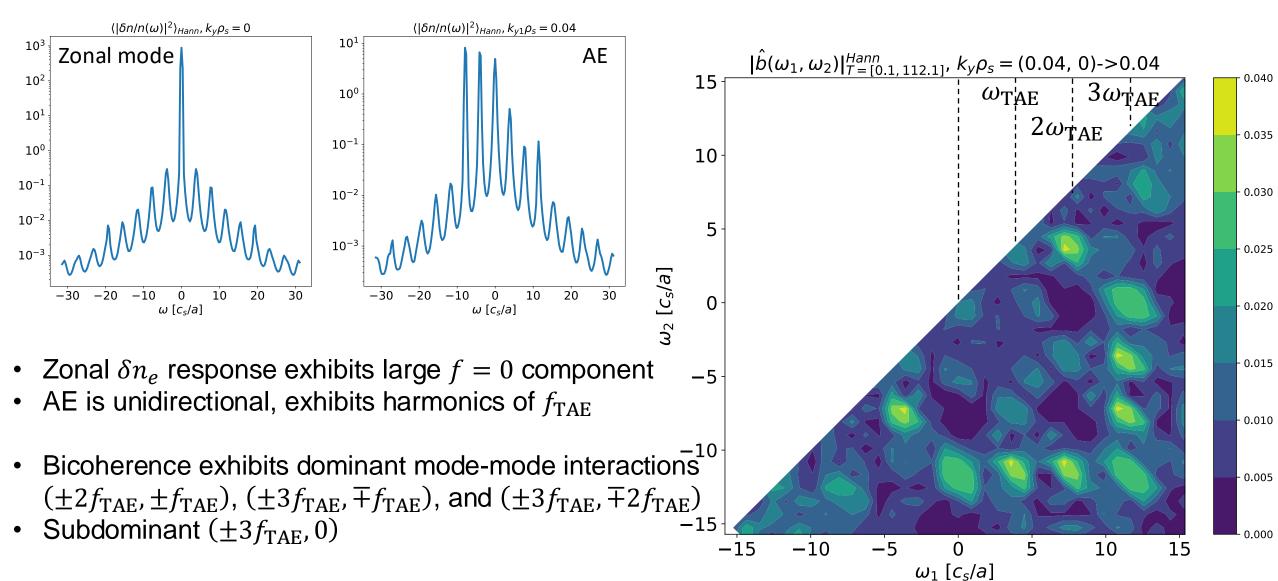
$$k_y \rho_{SD} = [0.02, 1.26], L_y = 314 \rho_{SD}$$

 $k_x \rho_{SD} = [0.015, 2.93], L_x = 410 \rho_{SD}$

- Heat flux dominated by ions for no EPs, $Q_i/Q_{gB} \approx 3$
- Stabilization of $Q_{i,e}$ with unstable AE $a/L_{T_{\rm fast}} \gtrsim 4$ (marginal AE instability)

Outline

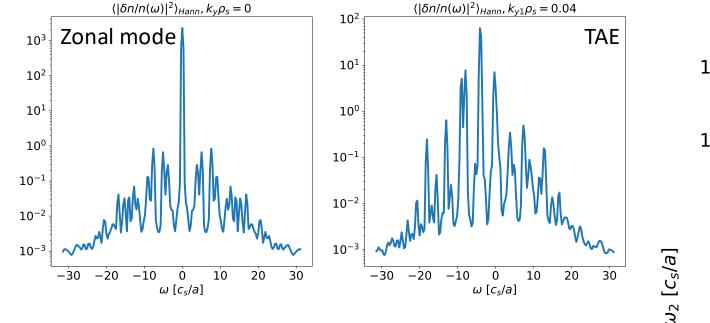
Experimental observations


- JET plasma with MeV-range ICRF-heated ions
- Alfvénic activity (TAE)
- Doppler backscattering (DBS) measurements
 - Power spectrum and bicoherence analysis (Ruiz Ruiz arXiv 2024)

Gyrokinetic modelling

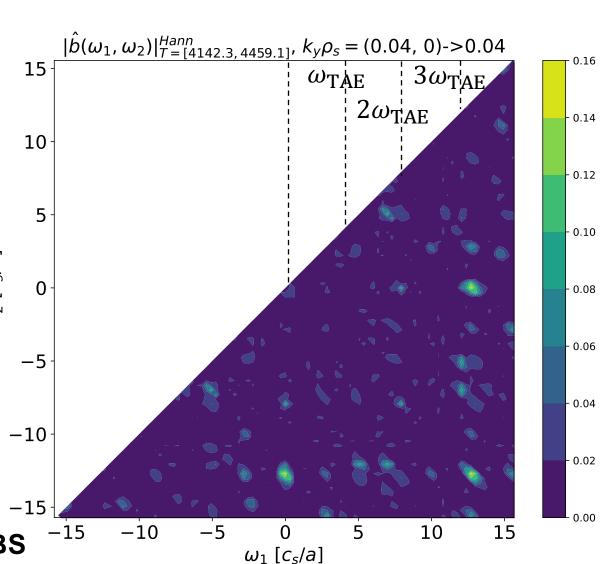
- Local nonlinear simulations (AE+ITG)
 - Effect on thermal transport
 - Bicoherence analysis

Density power spectrum and bicoherence at a/ L_{Tfast} = 6 (low drive) exhibits harmonics of f_{TAE} and dominant mode-mode interactions



Consistent with medium P_{ICRH} measurements from DBS

Density power spectrum and bicoherence at a/L_{Tfast} = 8 (med drive) exhibits harmonics of $f_{\rm TAE}$ and dominant interaction with f=0



- AE is unidirectional, exhibits harmonics of f_{TAE}
- Bicoherence exhibits dominant interaction with zonal component $(\pm 3f_{TAE}, 0)$, subdominant $(\pm 2f_{TAE}, 0)$

Conclusions

To our knowledge: the first experimental confirmation of a zero-frequency fluctuation that is pumped by an Alfvén eigenmode in a magnetically-confined plasma [*]. Confirmed by local nonlinear gyrokinetic simulations.

- JET discharge with dominant e- heating (MeV range fast ions) shows T_i and $H_{89,P}$ increase with P_{ICRH} , decrease in $\chi_i \rightarrow$ enhanced total confinement.
- Alfvénic modes (tornado TAEs) exhibit nonlinear phase-matching relations with a zero-frequency fluctuation, and suggest predator-prey behavior TAE-turbulencezonal flow.
- Nonlinear CGYRO confirms nonlinear phase-matching between f=0 and AE mode
 → zero-frequency fluctuation could be responsible for enhanced total plasma confinement, could balance deleterious energetic particle transport by the AEs