55.GG Calorimetry measurements for Cross-Calibration of Neutron Diagnostics

Matthew Clough
Daniel Iglesias
Lukasz Tomkow

Outline

Calorimetry goals

System principles

Algorithms alternatives

Forward modelling results

Futher plans

Calorimetry as ITER diagnostic system

- Calorimetry determination of heat transfer associated with changes in thermodynamic state variables of a body
- Application in ITER:
 - Supplementary system for the measurement of Total Fusion Power during normal operation
 - Fully software system, based on the data from sensors belonging to other systems
 - Provides the measurement after each plasma discharge cannot be used for online control
 - Main parameters of the Total Fusion Power measurement are summarized in the SRD-55 table

Condition	Range	Time Res.	Spatial Res.	Accuracy
Normal Operation	70 MW – 0.9 GW	1 s	None	10% <mark>+ 10 MW</mark>

[55s2837-I] This measurement is provided for archiving after the discharge - not for online control.

[55s2838-R; Defined Requirement] The following diagnostic system shall be provided to contribute to meeting the requirement 55s2836-R:

- 55.B4 Neutron Flux monitor Primary
- 55.GG Calorimetry Supplementary

Calorimetry goals

- Determination of integrated total fusion power complementary and independent from neutron flux measurement
- Cross-calibration with fast neutron flux sensors to provide reference point for their calibration
- Standalone measured value, better understanding of a pulse with the application of inverse algorithms

Simplified energy balance

 $P_{TCWS} = \dot{m} \cdot (h(T_{out}, p_{out}) - h(T_{in}, p_{in}))$ $P_{Fusion} = P_{TCWS} - P_{Plasma} + P_{Loss}$ IR losses, convection **Fusion** Plasma heating (~50 MW) **Escaping neutrons** power Auxiliary power Vessel activation Tokamak T_{out}, p_{out} T_{in} , p_{in} , mPumping Heat rejection from TCWS

Total thermal power determination

- Thermodynamic properties of water very well known
- Compared to other thermal processes, ITER is relatively simple
- Dependence of enthalpy on temperature and pressure close to linear in considered region

Actively cooled IBED components

- 1 loop for Divertor Cassettes
- 3 loops for
 - Blankets First wall
 - Blankets Shield block
 - Edge localized modes (ELMS) coils
 - Vertical stabilization coils (VS)
 - Upper Port Plugs (level L2)
- 1 loop for Equatorial Port Plugs (level L1) and 3 LPP

Total 5 loops of IBED PHTS

Ref-ITER_D_R89QZF

TCWS measurement Accuracy

- Flow measurement:
 - Performed with industrial flowmeters
 - Expected 1-2% accuracy
- Inlet and outlet temperatures
 - Thermo-well thermocouples (TC)
 - Expected 1% accuracy
- Pressure measurement similar to temperature
- Redundancy in the number of sensors
- Senors time resolution ~around 1 sec

Algorithm alternatives – global energy balance

- Used in WEST, NBIs at EAST, JET, ASDEX
- Input signals
 - Set 1: P_{ohm}, P_{aux}, etc
 - Set 2: thermocouples and flow meters at cooling inlet/outlet
- Description:
 - First group of signals give all input power except fusion power.
 - The second group of signals allow calculation of total energy.
 - Difference is the fusion energy.
 - Once the different delays of the systems are characterized, 1st group could be used for time resolved fusion power

- Simplest approach which will be able to give a good read of total energy
- Applied already in plenty of plant systems
- Power time resolution is limited
- No spatial nor system resolution

<u>Algorithm alternatives – inverse algorithms</u>

- Used in JET calorimetry, 55.GT thermal tasks
- Input signals:
 - Sets 1 and 2 from previous slide (engineering and plasma global measurements)
 - Additional temperature measurements (IR/TC at DFW/FW, VV, PPs, etc)
- Description:
 - Inverse reconstruction algorithms are able to reconstruct 0D-1D models or more complex 2D-3D fields
 - The system models used for forward analysis in this task are 0D-1D, very well suited for inverse analysis.
 - The algorithm gets a mix of measurements over time and gives back the accurate evolution of the neutron power, P(t)

- This approach is transient and could improve the timeresolution accuracy of approach #1
- Possible synergies with Physics (they are adapting the 2D-3D alg.) and maybe IR measurements
- Requires adaptation for use with TC signals at coolant inlet/outlets
- Heat transfer flow convection effects not tested, but currently in-work for 55.GT

Forward modelling – programmatical approach

*Commercial thermal process modelling software packages

Forward modelling – heat inputs

Forward modelling - results

- Transient response:
 - Inductive scenario
 - Blanket ring (1/3 load)
 - RELAP5

Modelica: Outlet peak T within 1 K (114°C)

Python: very good agreement with RELAP5

Calorimetry plan

Two phases defined (progress, in-work):

Forward system modelling

- Simplified model(s) definition: (1) alg. development and (2) calibration
- Analysis and understanding of system response
- Cross-checking with more complex models (RELAP5, EcoSimPro)
- Selection of relevant input scenarios for simulation
- Model refinement and definition of all TCWS cooling loops
- Generation of synthetic signals and definition of calibration strategy

Measurement algorithm development

- Agreement on objectives: 1st order and 2nd order preparation of sSRD
- Evaluation of alternative algorithms
- Definition of constraints, interfaces and workflow
- Description of mathematical underlying model based on Phase 1 model
- Code implementation and verification
- Release and deployment

Summary and outlook

- Management / strategy:
 - Create sSRD (individual requirements in preparation)
 - Facilitate communication with other systems (especially plasma heating) to obtain the needed data, discuss interfaces, and find synergies
 - Define strategy for use of calorimetry results for calibration of neutron flux sensors

• Modelling:

- Model refinement and definition of all TCWS cooling loops (in-work):
 - Error analysis (in work)
 - Comparison to the EcosimPro model once its developed (expected 2022)
- Generation of synthetic signals and definition of calibration strategy
- Development of reconstruction (inverse) algorithms
- Measurement algorithm development:
 - Evaluation of alternative algorithms
 - Definition of constraints, interfaces and workflow

