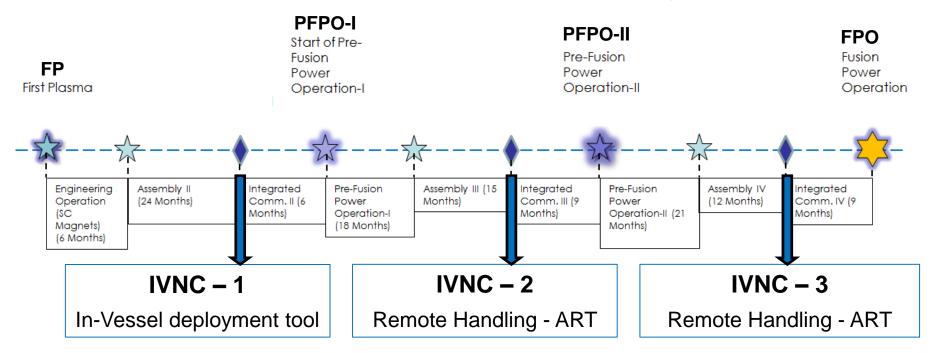

In-Vessel Neutron Calibrations Planning, Progress, Constraints

Silvia di Sarra, Bruno Coriton, Vitaly Krasilnikov, Thierry Martin and the Team

Introduction

- The purpose of the In-Vessel Neutron Calibration is to calibrate the Neutron Diagnostics in order to obtain accurate measurements of:
 - Neutron fluence
 - Fusion Power
 - Fusion Power Density
 - Neutron and Alpha source Profile
 - Neutron Yield
- Important: Fusion Power and Tritium accountancy
- How:
 - A neutron source is placed in the VV and irradiates the neutron diagnostics with known neutron fluxes, at predetermined positions/times, with energy distributions as close as possible to the plasma emission
 - ITER Machine neutronic models validation
- The calibration measured data and the validated model allow to correlate detectors count rates to the measured parameters

IVNC 1st Campaign Staging


IVNC Neutron Generator and control unit

Introduction

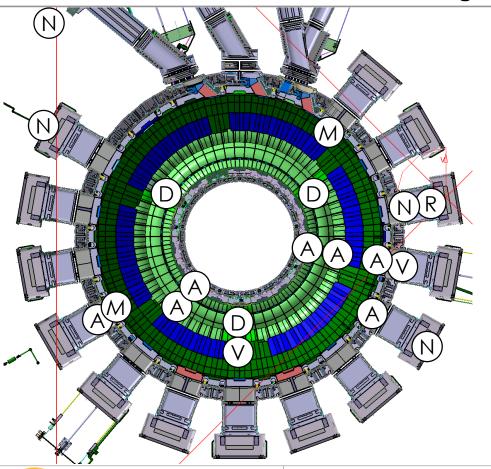
- IVNC Campaigns need to be repeated periodically for:
 - Neutronic models progressive improvement
 - Compensate for machine configuration changes
 - Compensate for long term detectors drifts and wear out effect in the machine
- 1st Campaign:
 - 3 Calibrated Diagnostics: NFM in EP#1, NAS in UP#18 and DNFM
 - Few irradiation points
 - First correction of the models: methodology consolidation
- 2nd and 3rd Campaigns:
 - Calibrated diagnostics and irradiation points maximization
 - Progressive improvement of the models
 - Machine configuration toward completion
- Following Campaigns
 - To compensate machine wear out and detectors drift

IVNC Schedule

IVNCs shall be performed periodically

Access to the VV Allowed

Access to the VV not allowed


General planning

Neutron Diagnostics shall be well calibrated especially for DT operation

- ITER is a DT machine
- DD operation
 - Limited
 - Reaches low power
 - No significant Tritium production
- The baseline foresees calibration campaigns focused on DD generators
- Moving toward a strategy mainly focused on DT generators

Campaign	Phase	NG Type - Baseline	NG Type - Proposal
I	Pre-PFPO-1	DD	DD & DT
II	Pre-PFPO-2	DD	DT
III	Pre-FPO	DT	DT
Following	During Operation	DT	DT

Calibrated Diagnostics Location

- Neutron Flux Monitors
- (D) Divertor Neutron Flux Monitors
- (M) MicroFission Chambers
- (A) Neutron Activation System
- (R) Radial Neutron Camera
- (V) Vertical Neutron Camera

Calibrated Diagnostics

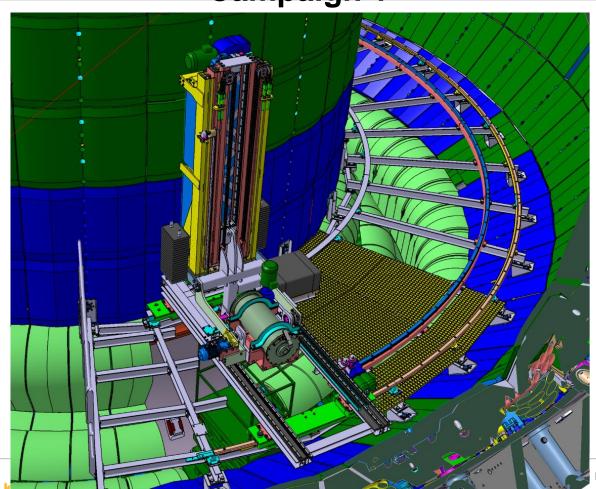
The number of directly calibrated detectors shall be maximized

- Calibration sources limited source strength allow direct calibration of only part of the Neutron Detectors
- Through the IVNC Campaigns, we are targeting to directly calibrate at least the most sensitive detector in the location specified below:
 - NFM#1 (1/4)
 - One MFC location (1/2)
 - NAS in UP#18, EP#17, VV surface in Sector 9 (4/8)
 - Two DNFM locations (2/3)
- Cross-Calibrations with standard plasma discharges will be performed for the other diagnostics

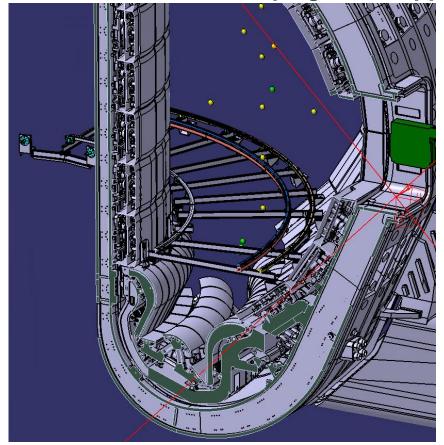
Can we calibrate the Cameras in-situ?

Neutron Source Choice

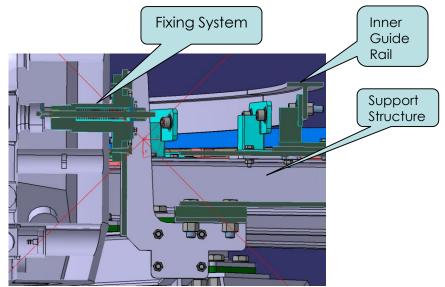
The neutron source used during IVNC shall be as close as possible to the fusion plasma source.

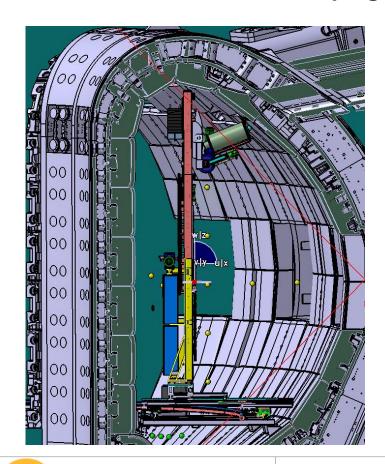

- Former candidates:
 - DD Campaigns: ²⁵²Cf (2.5 MeV neutrons)
 - DT Campaigns: Neutron Generators (14 MeV neutrons)
- Current choice: Neutron Generators only (2.5 MeV and 14 MeV)
- Californium discarded because:
 - Difficult recovery
 - High activity
 - Difficult shielding
 - Highly regulated

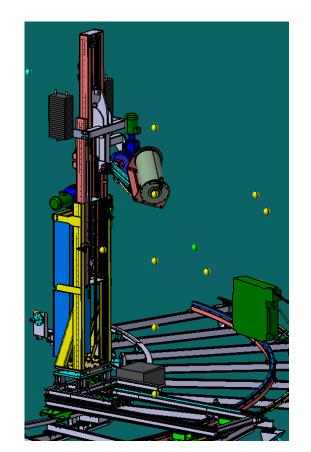
Required Machine Condition

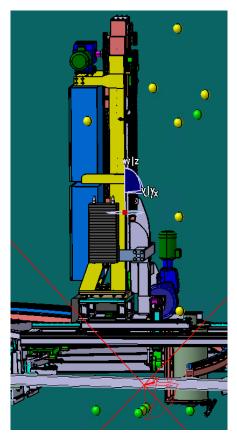

Calibration conditions shall be as close as possible to operation conditions

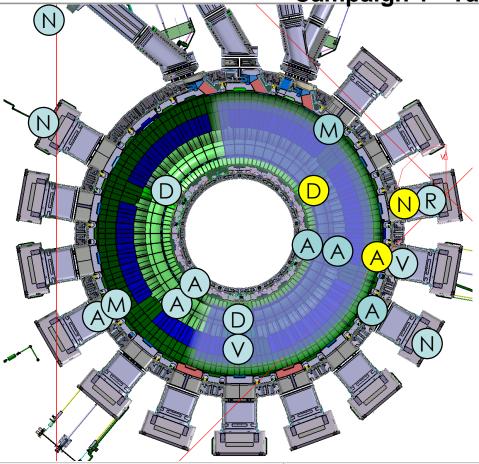
- As close as possible to Operation conditions
 - Blanket modules in place
 - Divertor Cassettes in place
 - Port Plugs in place
 - Cooling water in IBED loops (room temperature and 1 bar)
- Set of already commissioned systems:
 - Calibrated Diagnostics
 - IBED cooling loops
 - 55.BV components


Campaign 1

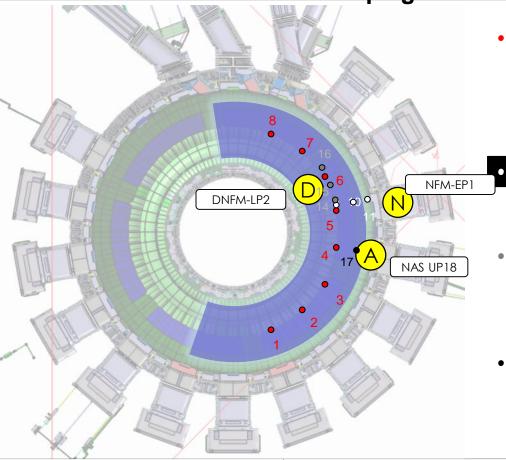

Campaign 1 - Support Structure & Railway




- A Support Structure is installed on the Fixing System which is pre-installed in the Blankets by MA
- Guiding Rails are used by the Tool to move toroidally.
- ➤ The complete angle of this Railway is 210°


Campaign 1 – Some NG Positions

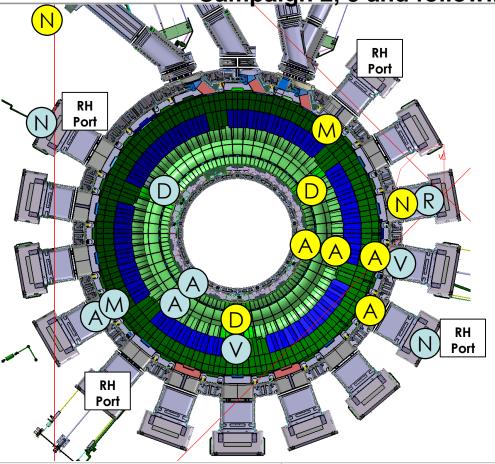
Campaign 1 - Target Diagnostics



- N Neutron Flux Monitors
- (D) Divertor Neutron Flux Monitors
- (M) MicroFission Chambers
- A Neutron Activation System
- (R) Radial Neutron Camera
- (V) Vertical Neutron Camera
- Targeted Diagnostics

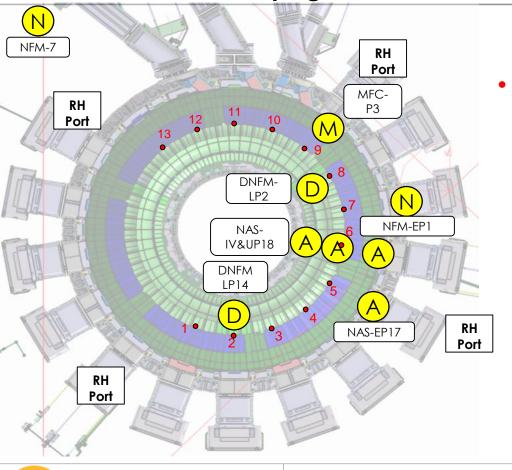
1st Campaign Staging coverage

Campaign 1 - Irradiation Plan

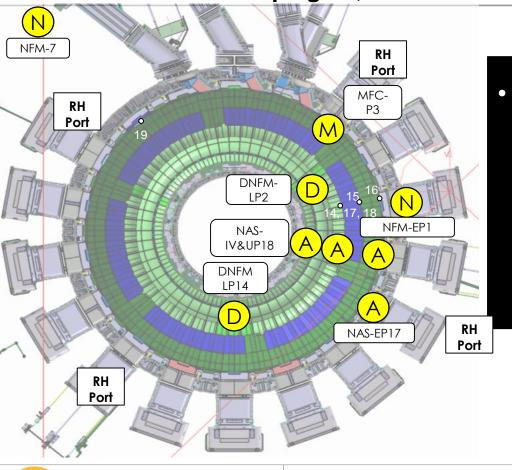

- Toroidal scan (P1 to P8):
 - 8 irradiation positions 20° apart from each other
 - Magnetic axes level
 - Covering 140° (Port 15 to Port 4)

Neutron Flux Monitor (P9 to P13):

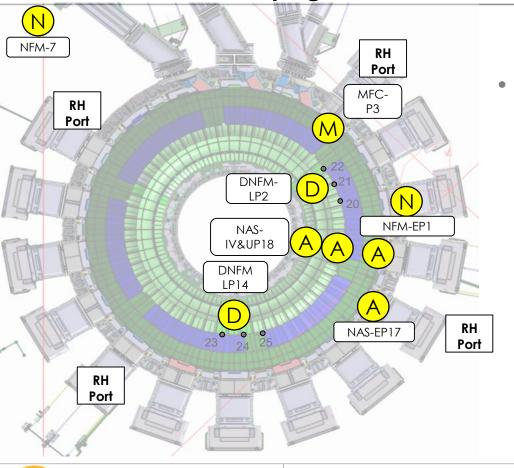
- Radial scan (3 positions)
- Vertical scan (2 positions)
- Divertor NFM (P14 to P17):
 - One position below the staging
 - Toroidal scan just above the platform (3 points 10 ° apart)
- Neutron Activation System (P18):
 - In front of the irradiation end


Campaign 2, 3 and following

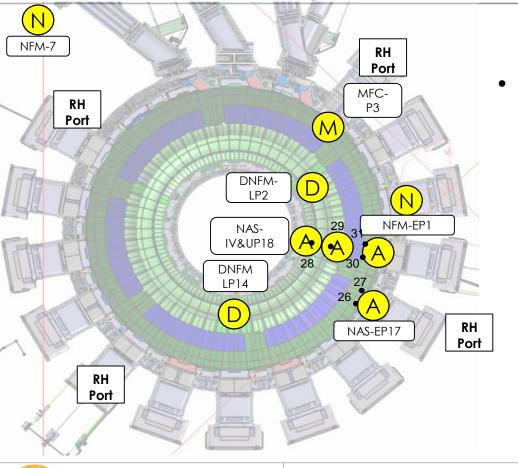
Campaign 2, 3 and following - Target Diagnostics

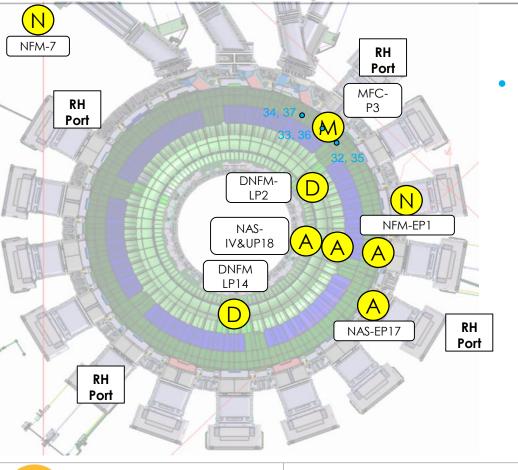


- N Neutron Flux Monitors
- D Divertor Neutron Flux Monitors
- (M) MicroFission Chambers
- A Neutron Activation System
- (R) Radial Neutron Camera
- (V) Vertical Neutron Camera
- Calibration Primary Target
- Secondary for Calibration

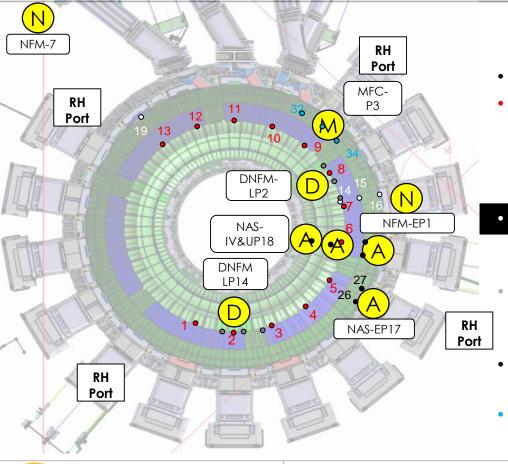

NFM-EP7

- Toroidal scan (13 points)
 - 13 irradiation positions 20° apart from each other
 - Magnetic axes level
 - Covering 260° (Port 13 to Port 8)


- Neutron Flux Monitors (6 points):
 - Radial and vertical scan for EP#1
 - One point for NFM#7


 Divertor NFM (6 points)

2/3 DNFM locations


Toroidal scan close to the detectors (3 points/location)

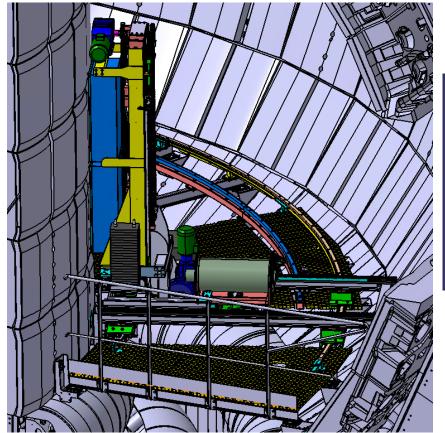
- Neutron Activation System (6 points)
 - 4/8 NAS Locations
 - One irradiation position per irradiation end

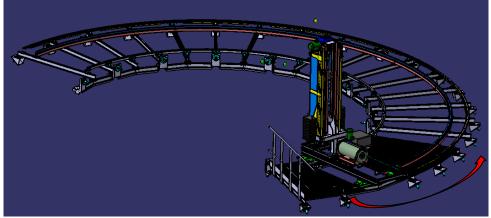
- Micro Fission Chambers (6 points)
 - ½ MFC locations
 - 3 toroidal positions for the upper

- 37 Irradiation positions
- Toroidal scan (13 points)
 - 13 irradiation positions 20° apart from each other
 - Magnetic axes level
 - Covering 260° (Port 13 to Port 8)
- Neutron Flux Monitor (6 points):
 - Radial and vertical scan for EP#1
 - One point for NFM#7
- Divertor NFM (6 points)
 - 2 locations
 - Toroidal scan close to the detectors
- Neutron Activation System (6 points)
 - One irradiation position per irradiation end
- Micro Fission Chambers (6 points)
 - 3 toroidal positions for the upper

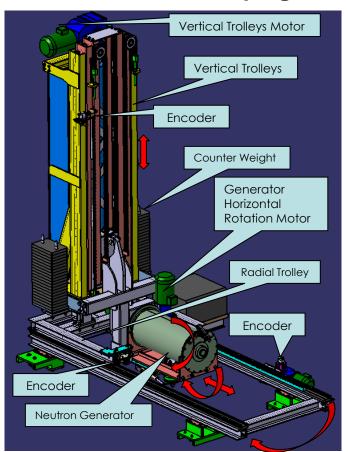
Conclusion

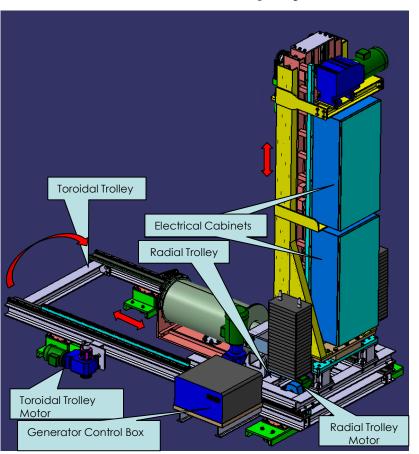
- IVNC Campaigns will be crucial to achieve target accuracies and validate neutronic models
- Neutron Generators will be used to irradiate Neutron Diagnostics
- A dedicated tool (before PFPO-1) and a RH tool will be used to position the NGs in several VV locations
- Calibration Campaigns are time consuming and require specific ITER Machine configuration. Their placement in the overall schedule shall be very carefully planned


Thank you


Back-up

Why IBED hot water discarded


- Early integrated commissioning start (with machine in non-complete configuration)
- Double TCWS commissioning (without and with 3 DCs installed)
- Double TCWS valves calibration (2 weeks procedure)
- NG and electronics cooling difficult
- All components, including RH tool compatible with high temperature
- Long times required to fill up + heat up circuits → then cool down and drain


Campaign 1 – Complete view of the Tool and Its environment

Campaign 1 – Neutron Generator Deployment Tool

Performances:

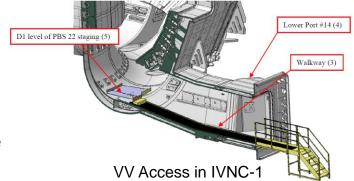
Toroidal: Speed max 250 mm/s, rotation axis = Tokamak Axis,

Power 0,25 Kw

Radial: Speed Max 150 mm/s, stroke 1900 mm. Power 0.12 Kw Vertical: Speed Max 375 mm/s, stroke 6000 mm, Power 3 Kw **Generator Horizontal Rotation:** Angular Speed Max 6°/s, Stroke -90° +20°, Power 0,55Kw **Generator Vertical Rotation:**

Stroke +/- 45°, Electrical Jack

Force: 1200N


Campaign 1 - Planning

Context:

- End of Assembly Phase II, Long Term Maintenance
- Before the start of PFPO-1 Phase
- DCs installation all installed except for the ones in front of LP14

Calibration sequence:

- 1. 55.BV components assembly (Access: LP14) → 3 days
- 2. Commissioning activities + IBED Circuits filling → 1 day
- 3. Irradiation \rightarrow TBD
- 4. Decay time + IBED draining → TBD
- 5. 55.BV components disassembly → 3 days
- The VV will be a Be environment in this phase

Campaign 1 – Constraints and Challenges

Main challenge: schedule

- Required partial commissioning activity of TCWS (3 DCs are not installed)
- Assembly of 55.BV components in Be environment
- Activation after irradiation
- Careful placing in ITER Assembly and Commissioning Plan

Campaign 2, 3 and following - Planning

Context:

- Long Term Maintenance Assembly Phase III, before PFPO-2
- Long Term Maintenance Assembly Phase IV, before FPO
- Between Fusion Operation Campaigns

Calibration sequence:

- 1. RH Port(s) removal → 1 month
- 2. RH Tool Assembly + IBED loops filling → <1 week
- 3. Irradiation → weeks (TBD)
- 4. RH Port re-insertion & re-commissioning + IBED drain → 1.5 month
 - 2.5 months required to remove, re-insert and re-commission RH port! This activity can in principle be performed in parallel with others

Campaign 2, 3 - Constraints and Challenges

- These calibrations will be performed in high ionizing radiation fields
 - All components shall be rad-hard
- Schedule:
 - Despite the use of an agile RH Tool, these campaigns will be extremely expensive in terms of time