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Abstract. A paraxial expansion of the (ensemble-averaged) Wigner function in the relevant wave kinetic equa-
tion for electron cyclotron waves in fluctuating plasmas allows the derivation of phase-space equations similar to
the equations for the Gaussian beam parameters in the paraxial WKB method [G.V. Pereverzev, Phys. Plasmas
5, 3529 (1998)]. This is relatively straightforward when the scattering of the wave field by density fluctuations
can be described by a diffusion operator in refractive-index space. The general case is rather more complicated,
yet we could find a heuristic construction of a paraxial Wigner function. Here we use a simple model, which
has an analytical solution, to test both the theoretical validity of the diffusion approximation and the heuristic
paraxial approach beyond the diffusion approximation.

1 Introduction

The wave kinetic equation (WKE) provides a suitable tool
to tackle the problem of the scattering of short-wavelength
waves from density fluctuations in fusion plasmas [1, 2].
In this approach, the typical correlation length of the fluc-
tuations is not required to be larger than the radiation
wavelength. Just the spatial variation of the correlation
length and of the root-mean-square density fluctuation is
required to satisfy the WKB limit, and this is usually the
case, since their magnitude is related to the equilibrium
profiles. The solution of the WKE gives the lowest-order
approximation of the statistically averaged Wigner func-
tion of the wave field in the short-wavelength limit, where
the statistical average is taken over an ensemble of den-
sity fluctuations. Density fluctuations, typically gener-
ated by plasma turbulence, are predicted to lead to a sig-
nificant beam broadening particularly in large machines,
in which the beam path across the plasma can be much
longer than in present-day fusion experiments [3, 4]. A di-
rect numerical solution of the WKE for electron cyclotron
(EC) waves in tokamak geometry has been implemented
in the WKBeam code [5]. Comparisons with both full-
wave codes [6] and experimental data [7] supported the
applicability of the underlying scattering model (based on
the Born approximation) to typical fusion-plasma param-
eters. The numerical approach implemented in WKBeam,
although much more efficient than a direct solution of the
wave problem (if this can be afforded at all), still leads
to a much heavier computational burden as compared to
beam-tracing codes like TORBEAM [8] or GRAY [9], in
which, however, the effect of density fluctuations has been
neglected.

A possibility to reduce the computational cost of the
solution of the WKE may still come from a generaliza-
tion of the paraxial approach used in TORBEAM to the
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averaged Wigner function. In fact, from the results of the
WKBeam code, we observe a strong localization of the av-
eraged Wigner function around a trajectory in phase space.
In previous work [10], we showed how such a paraxial ap-
proximation of the Wigner function can be constructed in
a simplified model. The result is a set of ordinary differ-
ential equations (ODEs), called phase-space beam-tracing
equations. If the diffusion approximation of wave scatter-
ing holds, the derivation of such phase-space beam-tracing
equations is relatively straightforward (at least in this sim-
plified model). In the general case, however, a different
strategy for the evaluation of the scattering effects must be
considered.

In this paper, we discuss the validity of the diffusive
limit on the basis of an analytical solution of the WKE. We
also use the analytical solution in order to assess the pro-
posed paraxial approach in a particular scattering scenario,
namely that of a thin fluctuation layer. In this context,
“thin” means that the variation of the beam parameters
due to refraction and diffraction can be neglected within
the layer, while outside the layer the propagation occurs
in the limit of vanishing fluctuations. This setup is similar
to the phase-screen model employed in trans-ionospheric
communication [11].

2 Model problem and analytical solution

The Wigner function description of EC wave beams is for-
mulated in spatial coordinates x, normalized to the scale
L of variation of the background medium. Here, the scale
length L is defined with the equilibrium quantities, that
are assumed independent of time, and therefore does not
capture the scale of fluctuations, which can be arbitrary.
Further, we have the refractive-index vector N = ck/ω,
where c is the speed of light in free space, and ω the angu-
lar frequency of the wave field. The statistically averaged
Wigner matrix of the wave electric field [1] is defined on



the position-refractive-index phase space with coordinates
(x,N) and depends on the parameter κ B ωL/c. Since L is
the scale length of the equilibrium, for EC waves in plas-
mas we have κ � 1. In the limit κ → +∞, each eigenvalue
W of the leading-order term of Wigner matrix satisfies the
constrained transport equation [1, 5]{H,W}

= −2γW + S (W),
HW = 0,

(1)

where {F,G} = ∇N F ·∇xG−∇xF ·∇NG denotes the canon-
ical Poisson bracket of two smooth functions F,G in the
(x,N) phase space, H is the geometrical optics Hamilto-
nian, hence H = 0 gives the dispersion relation of the wave
mode associated to W, γ is the absorption coefficient, and

S (W) =
( κ
2π

)d
∫

η2(x)Γ(κ, x,N − N′)

×
[
2πδ

(
H(x,N)

)
W(κ, x,N′)

− 2πδ
(
H(x,N′)

)
W(κ, x,N)

]
dN′, (2)

with η a given function depending on the mode polariza-
tion (the precise definition [5] is not needed here), δ is the
Dirac’s distribution, and

Γ(κ, x,N) =

∫
e−iκN·sE

(
δne(x + s

2 )δne(x − s
2 )

)
ds, (3)

where ne(x) = ne,0(x)+δne(x)/
√
κ is the total electron den-

sity split into the equilibrium part ne,0, and small random
fluctuations δne/

√
κ. The reasons for the scaling 1/

√
κ

are discussed in earlier work [1, 5]. The expectation-
value operator E is the average over an ensemble of fluc-
tuations δne. Equation (1) complemented by appropriate
boundary condition at the launching mirror is the WKE
solved by the WKBeam code.

The simplified test problem addressed in this paper is
obtained by choosing a two-dimensional domain (d = 2)
with coordinates x = (x, y) = (τ, y), N = (Nx,Ny), and

H(x,N) = N2
x + N2

y − 1, γ = 0, η = 1,

Γ(κ, x,N) = Γ0(τ,Ny) = 2πL2
C F2e−

1
2 κ

2L2
C N2

y ,
(4)

where F = F(τ) = E(δn2
e)1/2/ne,0 is the root-mean-square

of density fluctuations relative to the equilibrium density,
and LC is the correlation length, here assumed to be con-
stant. The dependence on κ is understood in the rest of the
paper.

Upon using δ(H) = (2Nx,0)−1δ(Nx − Nx,0), and the ap-
proximation Nx,0 = (1 − N2

y )1/2 = 1 + O(N2
y ) for small Ny,

we obtain W = (1/2)v(τ, y,Ny)δ(Nx − Nx,0) where v(τ, ·, ·)
is a distribution defined on the reduced (y,Ny) phase space
and satisfies the linear Boltzmann equation

∂τv + Ny∂yv = S 0(v), (5)

with

S 0(v) =
κ2

8π

∫
Γ0(τ,Ny − N′y)

×
[
v(τ, y,N′y) − v(τ, y,Ny)

]
dNy. (6)

One should note that simplification (4) are somewhat un-
physical: On the one hand, one assumes that the frequency
is so large that propagation can be described with the vac-
uum Hamiltonian; on the other hand, fluctuations are re-
tained. Therefore model (4) should be regarded as a com-
putational test. Nonetheless, such simplified model cap-
tures the essential parts of the WKE: Indeed, equation (5)
is essentially the same as the more realistic model stud-
ied by Chellaï et al. [7], the only difference being simpler
coefficients.

Particularly, we can obtain an analytical solution of (5)
on the line of the derivation sketched in the appendix of the
paper by Chellaï et al. [7]. This analytical solution is then
written in Fourier space, that is,

v̂(τ, p, q) =

∫
e−i(py+qNy)v(τ, y,Ny)dydNy,

= e
∫ τ

0 ϕ0(τ′,q+p(τ−τ′))dτ′ v̂0(p, q + pτ),
(7)

where

ϕ0(τ, q) =

√
π

8
κLC F2

[
e−q2/(2κ2L2

C ) − 1
]
, (8)

and

v̂0(p, q) =
2π
k0

√
π

2
w0|A0|

2e−
w2

0
8 (p+

q
R0

)2−ν2
0q2/2

. (9)

is the Fourier transform of the initial condition, with A0 be-
ing the initial electric-field amplitude, w0 the initial Gaus-
sian beam width, and R0 is the initial phase-front radius of
curvature. The energy densities in both real and refractive-
index space are given by

Ex(τ, y) =
κ

2π

∫
v(τ, y,Ny)dNy,

and
EN(τ,Ny) =

∫
v(τ, y,Ny)dy,

respectively, and their calculation requires the function v
in the (y,Ny)-space. However, their moments can be eval-
uated directly from v̂ [7]. In particular, from the second-
and fourth-order moments we can compute the width and
the kurtosis [12] of both distributions. The skewness is
identically zero for both distributions. Upon defining the
quantities

Fn(τ) B

√
2π

LC

∫ τ

0
F2(τ′)(τ − τ′)ndτ′,

for any integer n ≥ 0, the results can be written as

w2
x(τ) = w2

GB(τ) + F2(τ), w2
N(τ) = (w2

0/L
2
R) + F0(τ),

kurt
(
Ex(τ)

)
= 3 +

12
k2

0L2
C

F4(τ)(
wGB(τ)2 + F2(τ)

)2 ,

kurt
(
EN(τ)

)
= 3 +

12
k2

0L2
C

F0(τ)(
w2

0/L
2
R + F0(τ)

)2 ,

(10)

where wx and wN are the widths in real and refractive-index
space, respectively, whereas kurt(ρ) denotes the kurtosis



of the density ρ. We recall that any value in excess of 3
indicates that the distribution decays to zero more slowly
than a Gaussian, and thus have “fat tails”. In addition,
wGB(τ)2 = w2

0
[
1+ 2τ

R0
+ τ2

L2
R

]
and w2

0/L
2
R are the squared beam

width and spectral width of a standard Gaussian beam,
with 1/L2

R = 1/R2
0 + 4/(κ2w4

0).

3 Diffusive limit and diffusive scattering

For propagation distances longer than the transport mean-
free path [13, section 5.1 and references therein] the en-
ergy density Ex in physical space can be described by a
diffusion equation. This regime is referred to as diffusive
limit of the linear Boltzmann equation (5). A validity cri-
terion for the diffusive regime has been discussed in [4]
and can be re-derived here on the basis of kurt(Ex). For in-
stance, with a piecewise-constant profile F2(τ) = F2

max > 0
for 0 ≤ τ ≤ τF and F2(τ) = 0 otherwise, from (10) one
finds that as τ→ +∞,

kurt(Ex(τ)) ∼ kurt(EN(τ)) ∼ 3 +
6
λ

(ξλ/2)2

(1 + ξλ/2)2 (11)

where
λ =

√
π/2F2

max(k0LC)(k0τF), (12)

is the parameter introduced by Snicker et al. [4] and

ξ = (4L2
R)/(κ2w2

0L2
C). (13)

It is remarkable that the kurtosis of both Ex and EN have
the same asymptotic behavior. We deduce that both dis-
tribution observed at large τ, i.e, well after propagation
through the layer of fluctuations, have negligible excess
kurtosis if either λ � 1, in agreement with the criterion
established earlier [4], or ξ � 1.

We shall now show that the parameter ξ controls the
regime in which the scattering operator (6) can be approx-
imated by a diffusion operator acting in refractive-index
space only. This should not be confused with the diffusive
limit [13] in which one finds a diffusion operator in posi-
tion space. It is also somewhat stronger than the condition
of negligible kurtosis, since a diffusion operator preserves
the Gaussian form of the initial condition. Formally this
“diffusive scattering approximation” is obtained by a Tay-
lor expansion of the solution,

S 0(v) =
κ2

16π

[ ∫
(N′y)2Γ0(τ, τ,N′y)dN′y

]
∂2

Ny
v + S r(v),

where S r(v) involves the fourth-order the remainder term
in Taylor’s formula for v (odd-order terms vanish due to
symmetry of the integrand). Neglecting S r in equation (5)
leads to

∂τv + Ny∂yv = D(κ, τ)∂2
Ny
v(κ, τ, y,Ny), (14)

with refractive-index diffusion coefficient

D =

√
2π
8

F2(τ)
κLC

. (15)

The validity of (14) can be established on noting that the
Taylor’s expansion of ϕ0 for q2 � 2κ2L2

C gives, cf. (8),

ϕ0(τ, q) ≈ −D(κ, τ)q2, (q2 � 2κ2L2
C),

and the exact solution (7) of equation (5) reduces to the ex-
act solution of the diffusive-scattering approximation (14).
Therefore, we expect that (14) yields a good approxima-
tion of the solution of (5) if the initial condition v̂0 is con-
centrated in a region of its domain where q2 � 2κ2L2

C .
For a Gaussian beam, the width in q of the initial condi-
tion (9) is given by 8L2

R/w
2
0 and thus the condition amounts

to ξ � 1 as anticipated. In the special case of flat initial
phase front 1/R0 → 0, we have LR = κw2

0/2 and this re-
duces to ξ = w2

0/L
2
C � 1. We note that in realistic appli-

cation, typically ξ > 1 and the full scattering operator (6)
should be used.

4 Paraxial solution of the WKE

The Fokker-Planck equation (14), which holds for ξ � 1,
admits exact solutions of the form of a Gaussian distribu-
tion

v(κ, τ, y,Ny) = c(τ)e−κG
rr(τ)y2−2κGrN (τ)yNy−κGNN (τ)N2

y , (16)

where the amplitude c and the Gaussian parameters Grr,
GrN and GNN at the launch position can be obtained in
terms of electric field amplitude, beam width and focus-
ing, cf. (30) of [14]. Substitution into (14) gives ordinary
differential equations for the parameters of the Gaussian,
that is, [14]

dc
dτ

= −2κDGNNc, (17a)

dGrr

dτ
= −4κD(GrN)2, (17b)

dGrN

dτ
= −Grr − 4κDGrNGNN , (17c)

dGNN

dτ
= −2GrN − 4κD(GNN)2. (17d)

The general form (5) of the WKE is more complicated
since the operator S 0 does not preserve the Gaussian form
of the function v. However, equation (5) can be written as
an abstract evolution equation of the form [14]

dv
dτ

= Av + Bv, (18)

where Av = −Ny∂yv and Bv = S 0(v). A time-discretized
solution in terms of the Lie-Trotter operator splitting
method [15] is proposed [14, 16]. If 0 = τ0 < τ1 < · · · <
τk < · · · is a sequence of points in τ, the exact solution at
τ = τk formally can be written as

v(τk) = ΦA+B(τk, τk−1)v(τk−1), (19)

with the exact evolution operator ΦA+B(τk, τk−1) account-
ing for the effect of both operators A and B during the time
interval ∆τk = τk − τk−1 and v(τk−1) the solution before



this time step. After Fourier transform, ΦA+B can be con-
structed in the same way as the exact solution (7). Anal-
ogously, let ΦA and ΦB be the evolution operators for the
two sub-problems

dv
dτ

= Av,
dv
dτ

= Bv, (20)

respectively. A first-order approximation of ΦA+B(τk, τk−1)
is then obtained by the Lie-Trotter formula

ΦA+B(τk, τk−1) = ΦA(τk, τk−1)ΦB(τk, τk−1) + O(h2
τ),

where hτ = maxk ∆τk is the maximum step in τ.
For solutions of the form (16) the evolution operator

ΦA is exactly constructed by solving equations (17) with
D = 0 for the parameters of the Gaussian. For the evo-
lution operator ΦB associated to the full scattering op-
erator, we apply the explicit Euler scheme which gives
ΦB(τk, τk−1)v(τk−1) = ΦB

Euler(τk, τk−1)v(τk−1) + O(h2
τ) where

ΦB
Euler(τk, τk−1)v(τk−1) =

(
1 − ∆τkΣ(τk−1)

)
v(τk−1)

+
κ2∆τk

8π

∫
Γ0(τk−1,Ny − N′y)v(τk−1, y,N′y)dN′y, (21)

with

Σ(τ) =
κ2

8π

∫
Γ0(τ,Ny)dNy =

√
π

8
κLC F2(τ).

When applied to a Gaussian, the result of the action
of this operator is an amplitude decay of the original
Gaussian function (first term) plus the convolution of the
(Gaussian) fluctuation spectrum with the Gaussian initial
Wigner function. The result of such computation, again,
has the Gaussian shape as in (16) with the parameters
(c,Grr,GrN ,GNN) to be determined by evaluation of the
convolution integral.

As a result of the procedure described above, starting
from a Gaussian Wigner function after one time step we
have the sum of two Gaussian functions. Owing to the
linearity of equation (21) the strategy can be applied on a
superposition of Gaussians as well, doubling the number
of such Gaussian components of the beam after each time
step. Thus, at time τk the obtained paraxial approximation
vEuler of the solution can be written as superposition

vEuler(τk, y,Ny) =

m∑
i=0

vi(τk, y,Ny), (22)

with an exponentially growing number of scattered contri-
butions m = 2k (starting with one mode at τ0). Here, each
Gaussian mode vi is described by ansatz (16), with a set
of parameters (ci,Gi). The development of these modes is
illustrated in figure 1.

However, the fast growth of the number of Gaussian
modes might require a large numerical effort when the so-
lution is constructed in practice and makes it impossible to
provide an analytical interpretation of the results. On the
other hand, many effects may be retained when a simplify-
ing model is considered. Here, we introduce the model of a

Figure 1. Propagation of Gaussian modes: Bullets symbolize
propagating Gaussian modes. Red arrows pointing to the right
indicate mode propagation due to operator A, black arrows indi-
cate the effect of the scattering operator.

thin fluctuation layer, described by the piecewise-constant
profile introduced above, with F2

max = D/τF . The overall
effect of fluctuations for τ > τF is determined by the inte-
gral of the fluctuation amplitude function

∫ τF

0 F2(τ)dτ = D
and, thus, in this model measured by the parameter D. We
consider layers so thin that the variation of the parameters
in each Gaussian component vi of (22) due to the operator
ΦA can be neglected, hence ΦA(τk, τk−1) ≈ 1. Within the
layer, this simplification allows us to replace the parax-
ial solution vEuler with an adapted simpler approximation
given by a linear combinations of functions that are con-
structed by a repeated application of the convolution oper-
ator in (6). This construction of the functions is reminis-
cent of the Krylov subspace method. The first element is
chosen to be the initial Gaussian launched at τ = 0 with
parameters

Grr
0 = Φ, GrN

0 = 0, GNN
0 = Φ−1, (23)

where Φ = 2/κw2
0 computed from the initial beam width

w0 and the phase front is flat (1/R0 → 0) for simplicity.
Then the functions ψα = ψα(y,Ny) for α = 0, 1, . . . are
defined recursively by

ψ0 = e−κG
rN
0 y2−κGNN

0 N2
y , α = 0,

ψα = K(ψα−1)/γα−1, α ≥ 1,
(24)

with constant γα determined by the normalization condi-
tion ψα(0, 0) = 1 and with K being the convolution in Ny
by the Gaussian exp[−κ2L2

C N2
y/2] so that

Bψ = (κ2L2
C F2/4)K(ψ) − Σψ.

Explicitly, (24) yields

ψα(y,Ny) = e−κG
rN
α y2−κGNN

α N2
y ,

with parameters defined recursively by

Grr
α = Grr

α−1 = Grr
0 , GrN

α = GrN
α−1 = 0,

GNN
α = GNN

α−1

(
1 +

2Gα−1

κL2
C

)− 1
2
, γα =

√
2π

κLC

(
1 +

2Gα

κL2
C

)− 1
2
.



The recurrence relation for GNN
α , in particular, leads to the

closed equation

GNN
α = GNN

0

(
1 + 2α

GNN
0

κL2
C

)−1
, (25)

which can be proven by induction.
The solution within the layer is then approximated by

a linear combination of such Gaussian functions,

v(m)(τ, y,Ny) =

m∑
α=0

Cα(τ)ψα(y,Ny), 0 ≤ τ < τF , (26)

where Cα = Cα(τ) are coefficients to be determined. Out-
side the layer, each Gaussian component is propagated
with the exact evolution operator ΦA(τ, τF), i.e., by solving
(17) withD = 0.

The subspace spanned by a finite number of ψα is not
closed under the action of the operator K, or equivalently
B. Therefore a truncation is applied, that is,

Bv(m) = 1
4κ

2L2
C F2K(v(m)) − Σv(m)

= 1
4κ

2L2
C F2

m∑
α=0

γαCαψα+1 −

m∑
α=0

ΣCαψα

≈ 1
4κ

2L2
C F2

m∑
α=1

γα−1Cα−1ψα −

m∑
α=0

ΣCαψα,

where the term containing ψm+1 has been dropped. The
error of this approximation depends on how fast the coef-
ficients Cα decay to zero for α→ +∞.

Figure 2. Evolution of the spatial width wx of the beam along the
propagation axis x = τ. Comparison of the multi-Gaussian solu-
tion (26) and the analytical reference (10) for two sets of fluctu-
ation parameters. Beam parameters: initial width wx(0) = 3 cm,
initial curvature radius 1/R0 → 0, beam frequency f = 140 GHz.
First (second) set of fluctuation parameters: fluctuation layer
width τF = 1 cm (30 cm), fluctuation strength F = 0.05 (0.003),
correlation length LC = 1 cm (1 cm).

The substitution of (26) into the equation for ΦB in (20)
together with the truncated form of Bv(m) leads to

dCα

dτ
= σα−1Cα−1(τ) − ΣCα(τ), (27)

Figure 3. Evolution of the spatial kurtosis kurt(Ex) of the beam
along the propagation axis x = τ. Comparison of the multi-
Gaussian solution (26) and the analytical reference for two sets
of fluctuation parameters. Parameters cf. fig. 2.

with the coefficients

σα =
1
4
κ2L2

Cγα = Σ ·
(
1 + 2

GNN
α

κL2
C

)− 1
2
, (28)

and σ−1 = 0 by definition (no contribution to the non-
scattered Gaussian function). Equation (27) can be readily
integrated with the result that

Cα(τ) =
τα

α!

α−1∏
µ=0

(
σµ

)
e−ΣτC0(0). (29)

When (25), (28), and the definition of D are inserted, again
by induction one can show that

Cα(τF) =

(√
π
8κLC D

)α
α!

e−
√

π
8 κLC D

√
GNN
α

GNN
0

C0(0). (30)

The projection onto the configuration space of the Wigner
function (26) can be computed from (30), with the result

Ex(τF , y) =

√
κ

4π

m∑
α=0

Cα(τF)√
GNN
α

e−κG
rr
0 y2
. (31)

After inserting the amplitudes Cα(τF) and letting m→ +∞

the sum becomes a series which can be computed analyti-
cally, with the result

Ex(τF , y) =

√
κ

4πGNN
0

C0(0)e−κG
rr
0 y2
, (32)

which is equivalent to the initial beam cross section in
configuration space Ex(0, ·). The conservation of Ex

is a property of the exact evolution operator ΦB, since∫
S 0(v)dNy = 0, and we find that it is preserved by the

approximated solution (26) in the limit m→ +∞.
As for the spectrum EN , with the approximated solu-

tion v(m) and in the limit m→ +∞, we obtain

EN(τF ,Ny) =

√
π

κΦ
e−λ/2

∞∑
α=0

(λ/2)α

α!
C0(0)√
1 + αξ

e−κG
NN
α N2

y ,

(33)



Figure 4. Evolution of the spectral width wN of the beam along
the propagation axis x = τ. Comparison of the multi-Gaussian
solution (26) and the analytical reference (10) for two sets of
fluctuation parameters. Parameters cf. fig. 2.

Figure 5. Evolution of the spectral kurtosis kurt(EN) of the beam
along the propagation axis x = τ. Comparison of the multi-
Gaussian solution (26) and the analytical reference (10) for two
sets of fluctuation parameters. Parameters cf. fig. 2.

where the parameters λ and ξ are defined in section 3, cf.
equations (12) and (13) with LR = κ2w2

0/2 for an initially
flat phase-front, and GNN

α = Φ−1/(1 + αξ). This result
reflects the fact that the scattering operator ΦB has a di-
rect impact on the spectrum of the beam only, leaving its
spatial structure unaffected. In turn, application of ΦA

leads to a spatial evolution of the beam which preserves
its spectrum. The spectrum EN computed with v(m), equa-
tion (33), becomes a superposition of Gaussian functions
of different widths. With every application of the convo-
lution part of the scattering operator, GNN

α decreases lead-
ing to eventually broad tails in the spectrum arising from
higher α modes. We can compute the kurtosis of the dis-
tribution (32). The even-order moments are∫

N2n
y EN(τF ,Ny)dNy =

π

κ
Φn (2n − 1)!!

(2κ)n C0(0)

× e−λ/2
∞∑
α=0

(λ/2)α

α!
(1 + αξ)n .

The remaining sums can be traced back to the Taylor series
of the function f (λ) = eλ/2 and evaluated analytically, with

the result

kurt
(
EN(τF)

)
= 3 + 3

1
λ
2 + 2

ξ
+ 2

ξ2λ

.

This result is identical to the exact asymptotic limit ob-
tained in equation (11).

The evolution of the spatial beam width, spatial kur-
tosis, spectral beam width and spectral kurtosis is shown
versus the spatial position x = τ along the beam axis
for two scenarios in the figures 2 to 5. For scenario 1,
the parameters represent a relatively thin fluctuation layer
(xF = τF = 1 cm), whereas scenario 2 includes a broader
fluctuation layer with xF = τF = 30 cm. As expected, in
all figures multi-Gaussian solution and the analytical so-
lution coincide very well when a thin fluctuation layer is
considered. In figures 2 and 3 one can see that within the
fluctuation layer the quantities describing the spatial dis-
tribution are exactly conserved by the multi-Gaussian so-
lution. As discussed above, the effect of a disturbed spec-
trum (due to the action of ΦB) on the spatial distribution
arises from the evolution of the beam via the transport op-
erator ΦA. This evolution is deferred in the multi-Gaussian
solution for which the operator ΦA is applied only after the
fluctuation layer. In turn, the transport operator leaves the
spectral distribution unchanged as can be seen in figures 4
and 5. Broadening of the spectrum inside the fluctuation
layer can be observed in figure 4. The kurtosis in figure 5
starts from the Gaussian value kurt = 3 and, after reach-
ing a maximum, matches the exact value analytically if
m→ +∞, as shown above.
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