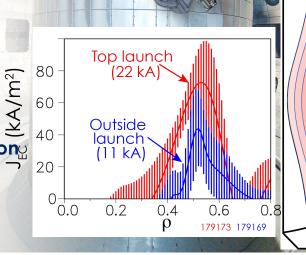
Higher Off-Axis Electron Cyclotron Current Drive Via 'Top Launch' Approach Demonstrated on the DIII-D Tokamak


Xi Chen¹, C.C. Petty¹, R. Prater¹, M. Cengher
J. Lohr¹, D. Su¹, I. Holmes¹, M. Austin², C.
Holcomb³, Y. Gorelov¹, L. Lao¹, D. Ponce¹, A.
Torrezan¹, J. Doane¹, J.M. Park⁴, R.I. Pinsker¹,
B. Victor³, L. Zeng⁵, J. Squire¹, M. Ross¹

¹General Atomics

Presented at the

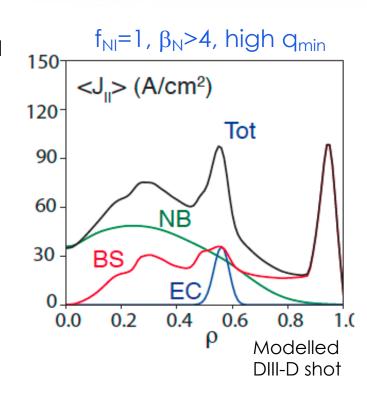
21st Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating ITER Organization HQ, France

June 20 – 24, 2022

Top launch

ECCD launcher

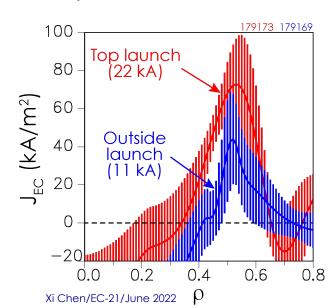
²University of Texas-Austin

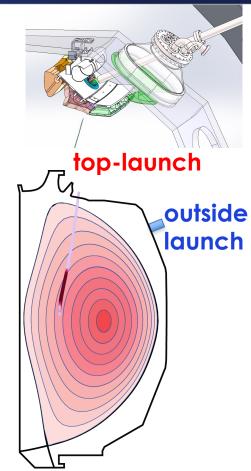

³Lawrence Livermore National Laboratory

⁴Oak Ridge National Laboratory

⁵University of California-Los Angeles

Steady-State Advanced Tokamak (AT) Operation Requires Efficient Off-Axis Current Drive


- Off-axis current drive is needed to achieve the broad "AT" current profile favorable for stability and transport
 - High CD efficiency (ξ_{CD}) is needed for high fusion gain \rightarrow Q = $P_{fus}/P_{aux} \sim \xi_{CD}$
- Efficient methods of off-axis current drive need to be demonstrated in ongoing fusion experiments
 - Top launch ECCD is one of the reactor-relevant techniques being developed on DIII-D to efficiently drive current at the right location

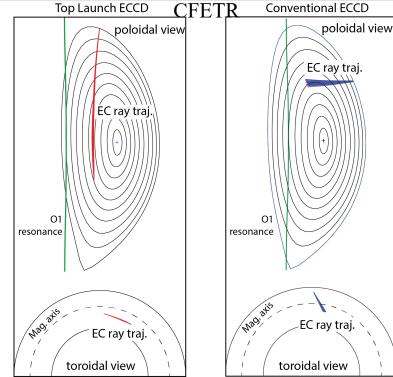


Doubling of Off-axis ECCD Achieved on DIII-D via Top Launch Approach

- A top launch ECCD system installed on DIII-D to allow experimental validation
- Experiments have tested main tenets of top-launch ECCD
 - Geometry allows selective wave interaction with high V_{\parallel} electrons having high CD efficiency
 - Long absorption path compensates for inherently weak damping at high V_{II}

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors



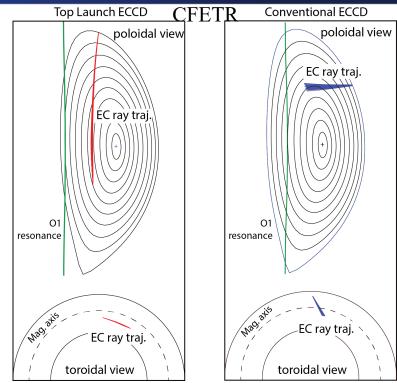
Top Launch ECCD with a Large Doppler Shift Ensures Strong Damping on Tail Electrons Leading to Higher ECCD

Top Launch ECCD injects EC wave¹:

- nearly parallel to the resonance plane
- 2 with strong toroidal steering

- 3 on HFS of the plasma
- 4 either O1 or X2-mode

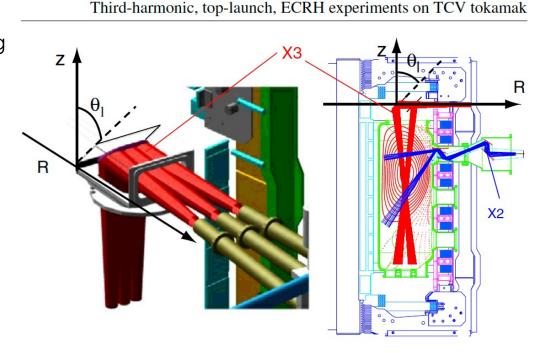
Ray Tracing TORAY Calculation


¹ K. Hamamatau and A. Kukuyama, PPCF (2000); R.W. Harvey and F.W. Perkins, NF 2001; R. Prater, et al, APS (2012); E. Poli, et al, NF 53 (2013) 013011; Y. Bae, et al, EC-19; Xi Chen, et al, EC-20 Xi Chen/EC-21/June 2022

Top Launch ECCD with a Large Doppler Shift Ensures Strong Damping on Tail Electrons Leading to Higher ECCD

Top Launch ECCD injects EC wave¹:

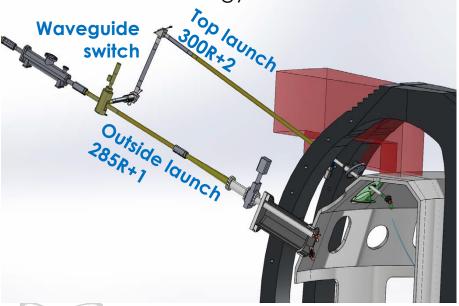
- nearly parallel to the resonance plane
- **▶longer absorption path** arises from EC trajectory that gradually approaches the resonance
- 2 with strong toroidal steering
- **>increased Doppler shift** ensures EC wave power is absorbed by higher energy (less collisional) electrons throughout long interaction zone
- 3 on HFS of the plasma
- >reduce trapping effects (reduce the cancellation of Ohkawa counter current)
- 4 either O1 or X2-mode
- >Strongly absorbed for Te>1keV

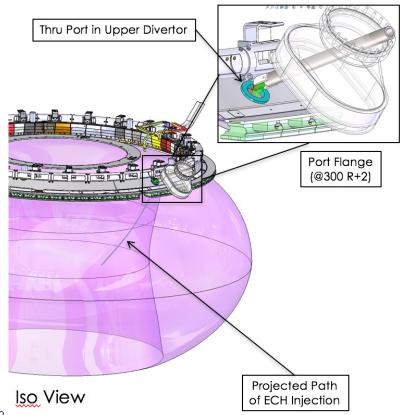

Ray Tracing Code TORAY Calculation

¹ K. Hamamatau and A. Kukuyama, PPCF (2000); R.W. Harvey and F.W. Perkins, NF 2001; R. Prater, et al, APS (2012); E. Poli, et al, NF 53 (2013) 013011; Y. Bae, et al, EC-19; Xi Chen, et al, EC-20

Top Launch ECCD Differs From TCV Top Launch ECH

- Important high density heating experiments have been done on TCV tokamak using top-launch ECH¹
 - Launch EC wave with nearly zero toroidal steering
 - Use X3 to heat high density
 (> X2 cutoff) plasmas
 - Current drive not studied


Fixed-injection Prototype System Installed on DIII-D to Evaluate and Characterize Top Launch ECCD Approach

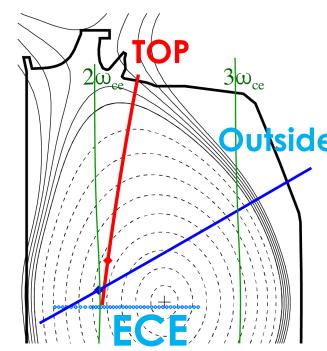

New top launcher can be switched into existing waveguide

Dedicated gyrotron is not needed

2nd harmonic X-mode damping

117.5 or 110 GHz gyrotron can be used

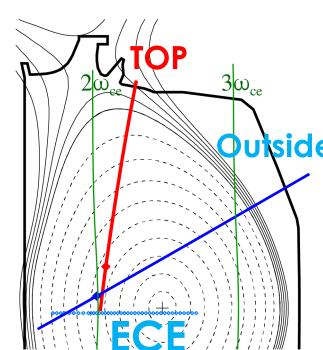
Outline


- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high v_{||} electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

 EC source and T_e response are related through Fouriertransformed energy conservation equation

$$-D\nabla^2 \tilde{T}_{\rm e} + V\nabla \tilde{T}_{\rm e} + \frac{1}{\tau} \tilde{T}_{\rm e} + i\frac{3}{2} \omega_{\rm M} \tilde{T}_{\rm e} = \frac{\tilde{S}_{\rm ECH}}{n_{\rm e}}$$

T_e response measured by Electron
 Cyclotron Emission (ECE) with high spatial
 and temporal resolution

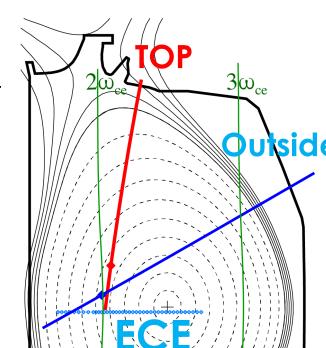


 EC source and T_e response are related through Fouriertransformed energy conservation equation

$$-D\nabla^2 \tilde{T}_{e} + V\nabla \tilde{T}_{e} + \frac{1}{\tau} \tilde{T}_{e} + i \frac{3}{2} \omega_{\text{M}} \tilde{T}_{e} = \frac{S_{\text{ECH}}}{n_{e}}$$

Gyrotron modulation frequency

- T_e response measured by Electron
 Cyclotron Emission (ECE) with high spatial
 and temporal resolution
- Experiments utilized various gyrotron modulation frequencies (ω_M)

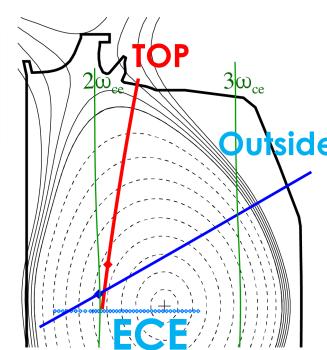


 EC source and T_e response are related through Fouriertransformed energy conservation equation

$$-D\nabla^2 \tilde{T}_{e} + V\nabla \tilde{T}_{e} + \frac{1}{\tau} \tilde{T}_{e} + i\frac{3}{2}\omega_{\rm M} \tilde{T}_{e} = \frac{\tilde{S}_{\rm ECH}}{n_{\rm e}}$$

D, V, τ are transport coefficients

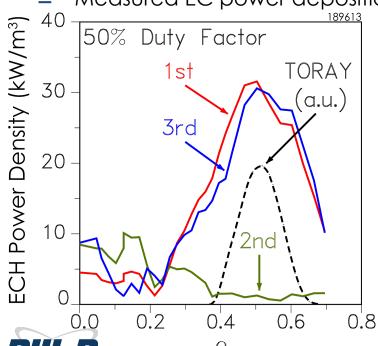
- T_e response measured by Electron
 Cyclotron Emission (ECE) with high spatial
 and temporal resolution
- Experiments utilized various gyrotron modulation frequencies (ω_M)

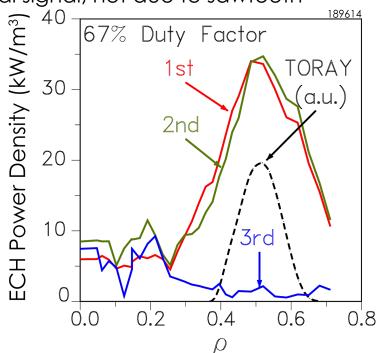


 EC source and T_e response are related through Fouriertransformed energy conservation equation

$$-D\nabla^2 \tilde{T}_{e} + V\nabla \tilde{T}_{e} + \frac{1}{\tau} \tilde{T}_{e} + i \frac{3}{2} \omega_{M} \tilde{T}_{e} = \frac{\tilde{S}_{ECH}}{n_{e}}$$

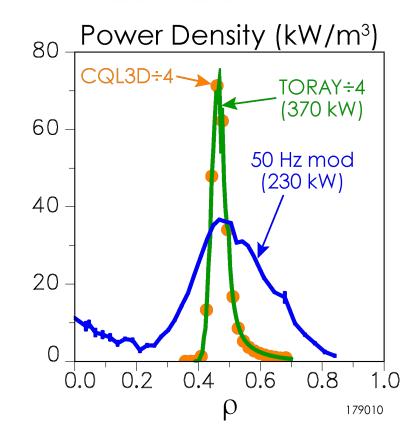
High frequency limit


- T_e response measured by Electron
 Cyclotron Emission (ECE) with high spatial
 and temporal resolution
- Experiments utilized various gyrotron modulation frequencies (ω_M)

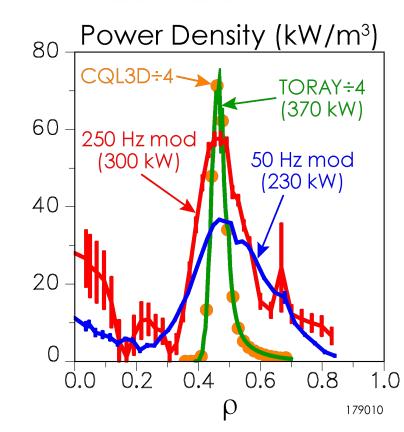


Plasma Response to Modulated ECH Confirmed

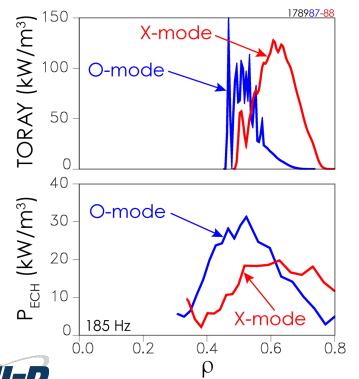
- Measurements confirm the expected harmonic response from modulation
 - Single gyrotron modulated in a plasma with sawteeth

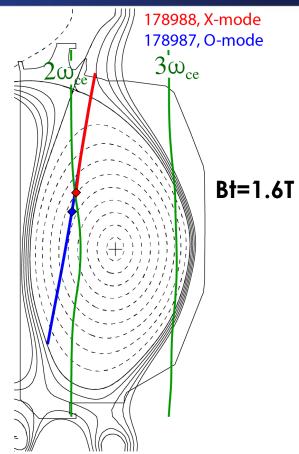

Measured EC power deposition is real signal, not due to sawteeth

Measured Power Deposition of Top Launch ECCD Generally Agrees with TORAY and CQL3D Predictions

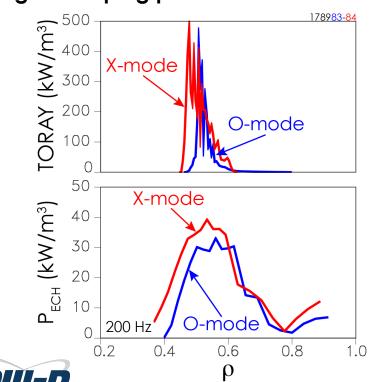

 Good agreement found between experimental and theoretical locations of top launch EC absorption

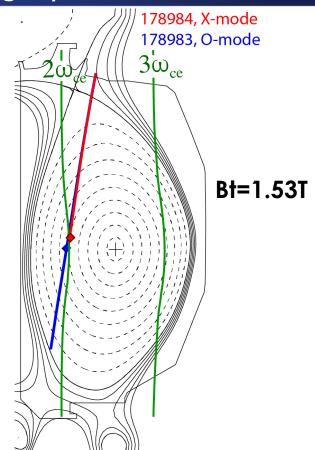
Measured Power Deposition of Top Launch ECCD Generally Agrees with TORAY and CQL3D Predictions


- Good agreement found between experimental and theoretical locations of top launch EC absorption
- Measured EC power deposition profile is in better agreement with theory for higher modulation frequencies (weaker transport effects)

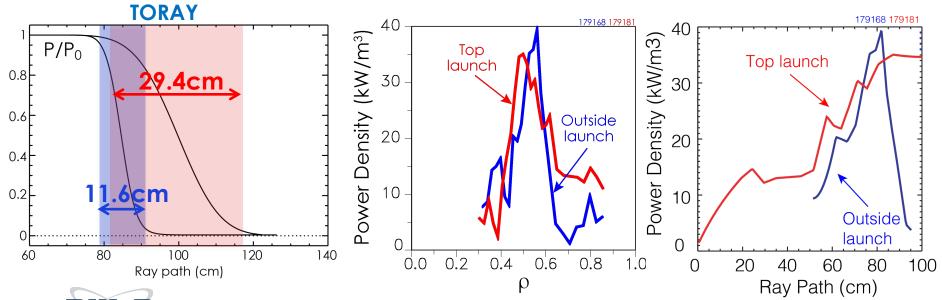


Shifted Radial Deposition Between O-mode and X-mode can Verify Vertical Path Trajectory of Top-Launch ECCD


 O2 has weaker absorption than X2 and has longer damping path



Below Midplane, O-Mode Profile Switches Places with X-Mode Because Longer Vertical Path Ends at Larger p


 O2 has weaker absorption than X2 and has longer damping path

Broader Power Deposition Profile of Top Launch Confirms the Predicted Longer Absorption Zone

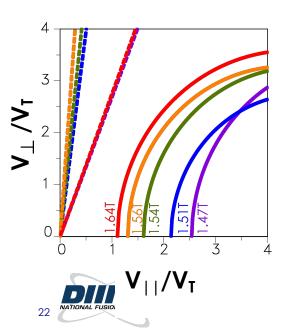
- Theory predicts a longer absorption path for top launch, a result of EC waves approaching the resonance more gradually than for conventional outside launch
- Along ray path, the FWHM of EC power deposition profile measured by ECE is ~3x longer for top launch than outside launch ECCD

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

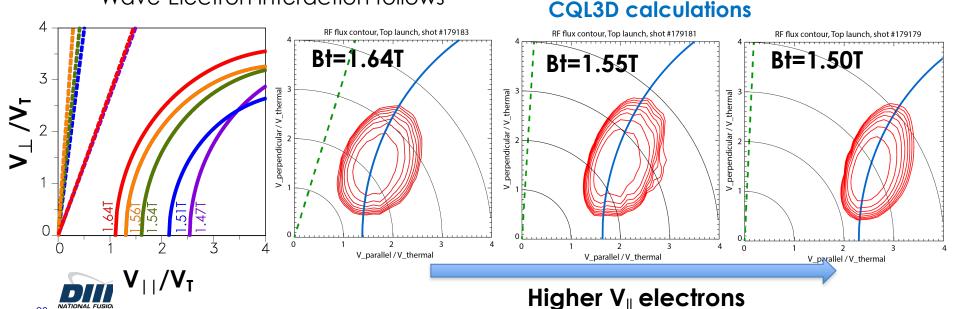
Power Deposition Location of Top Launch ECCD Moves with Magnetic Field

 Magnetic field (B_t) is scanned with fixed-injection to move the cold resonance location closer to or further away from the EC trajectory


TORAY Prediction shot #179183 shot #179181 shot #179179 Bt = 1.55TBt = 1.64TBt = 1.5T

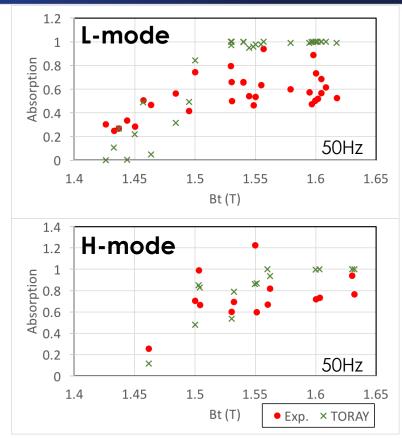
Measurement (ECE)

shot	Bt(T)	ρ _{EC}
179183	1.64	0.56
179181	1.55	0.48
179179	1.50	0.50


Top Launch ECCD Wave Interacts with Higher $V_{||}$ Electrons for Lower Magnetic Fields

- At fixed-injection, varying the magnetic field alters the wave-electron interactions in the velocity space
 - Lower B_t pushes resonance to higher V_{||} Cyclotron resonance $\omega \omega_{ce}/\gamma = k_{\parallel} V_{\parallel}$

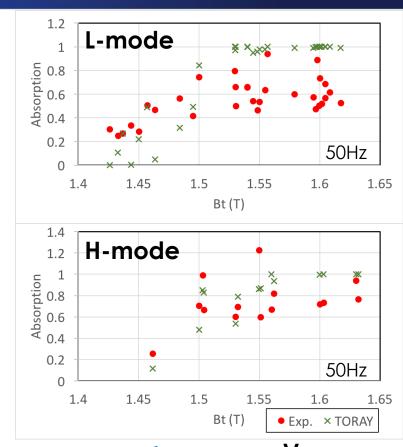
Top Launch ECCD Wave Interacts with Higher $V_{||}$ Electrons for Lower Magnetic Fields


- At fixed-injection, varying the magnetic field alters the wave-electron interactions in the velocity space
 - Lower B_t pushes resonance to higher V_{||} Cyclotron resonance $\omega \omega_{ce}/\gamma = k_{\parallel} V_{\parallel}$
 - Wave-Electron interaction follows

Xi Chen/EC-21/June 2022

Top Launch EC Absorption is Reduced When Wave Interacts with Too Few High V_{\parallel} Electrons

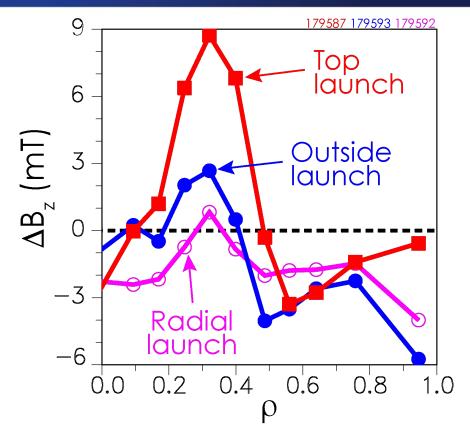
- Measured absorption fraction decreases with lower B_t (higher V_{||}/V_t), in agreement with TORAY, when the damping on tail electrons is too weak
 - Higher B_t cases were tried but the ECE array couldn't cover the entire deposition profile



Top Launch EC Absorption is Reduced When Wave Interacts with Too Few High V_{\parallel} Electrons

- Measured absorption fraction decreases with lower B_t (higher V_{\parallel}/V_t), in agreement with TORAY, when the damping on tail electrons is too weak
 - Higher B_t cases were tried but the ECE array couldn't cover the entire deposition profile
- Since higher energy electrons drive current more efficiently, there is a optimum (optimal B_t) for top launch ECCD:

High V_{\parallel}/V_{t} electrons + sufficient absorption \Rightarrow High ECCD efficiency


Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

Larger Change in MSE Pitch Angles Observed for Top Launch Than for Outside Launch ECCD

- Motional Stark effect (MSE)
 polarimetry measures vertical
 component of magnetic field (Bz)
 as a function of plasma radius
- Change in MSE signal compared to similar "no ECH" discharge shown

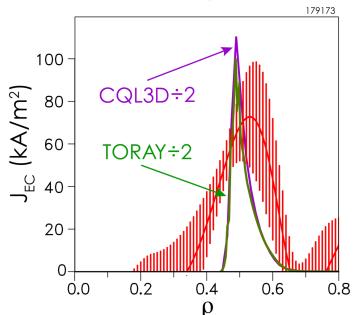
ECCD Profile Determined from Difference Between Oblique Launch and Radial Launch

Non-inductive current drive determined using Ohm's law:

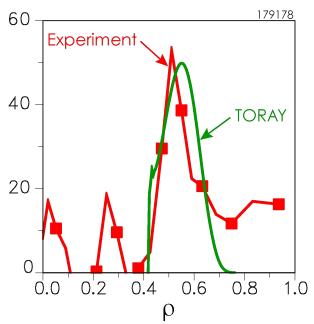
$$J_{\rm NI} = J_{\parallel} - \sigma_{\rm neo} E_{\parallel}$$
 neoclassical conductivity
$$E_{\parallel} \sim \frac{1}{R_{\rm o}} \frac{\partial \psi}{\partial t}$$

Pure heating effect is eliminated by

$$J_{\text{EC}} = J_{\text{NI}}(\text{ECCD}) - J_{\text{NI}}(\text{ECH})$$

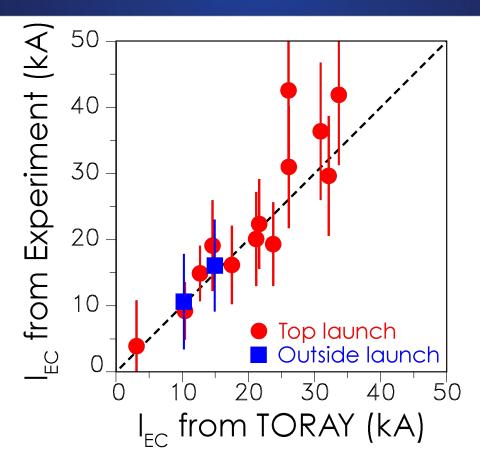

- Two analysis methods are used:
 - A determining J_{\parallel} and E_{\parallel} from equilibrium reconstruction with MSE data
 - > narrow ECCD profile measured by using cos²(kw) term in current reconstruction¹
 - B determining J_{\parallel} and E_{\parallel} directly from MSE data
 - ➤ direct application of Ampere's and Faraday's laws to B_z profile²

¹ L.L. Lao, et al., Proc. 14th Top. Conf. on Radiofrequency Power in Plasmas (2001) p 310 ² C.C. Petty, et al., PPCF **47** (2005) 1077

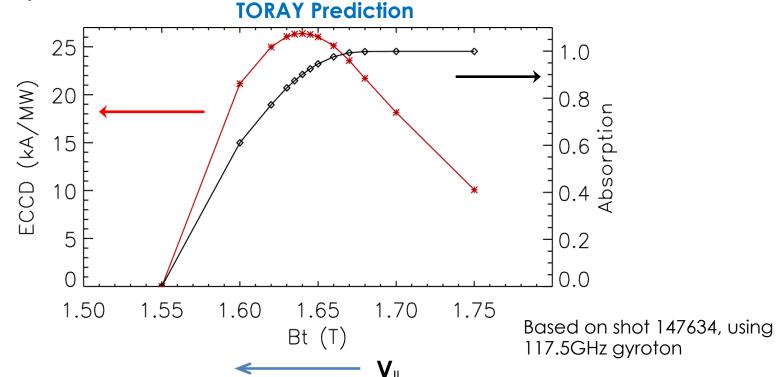

Measured Off-axis Current Profile via Top Launch ECCD is Generally Consistent with Theoretical Prediction

Loop voltage analysis for MSE EFITs with local $\cos^2(k\psi)$ representation

ELMing H-mode plasma, $I_p = 0.6 \text{ MA}$, $T_e(0) = 2.3 \text{ keV}$, $n_e = 1.6 \times 10^{19} \text{ m}^{-3}$


Direct MSE analysis method

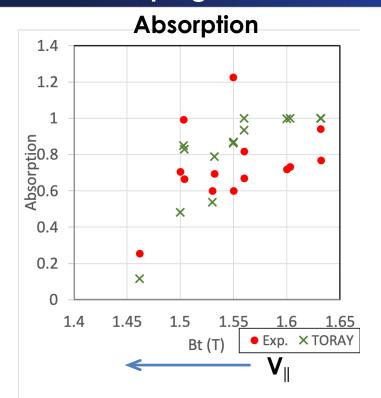
ELMing H-mode plasma, $I_p = 0.6MA$, $I_e(0) = 2.5 \text{keV } n_e = 1.7 \times 10^{19} \text{m}^{-3}$

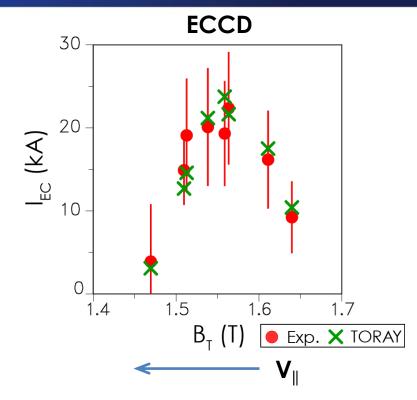


Integrated ECCD Magnitude in Good Agreement with Theory

For Top Launch, Highest ECCD Predicted for Optimal Tail Electron Absorption

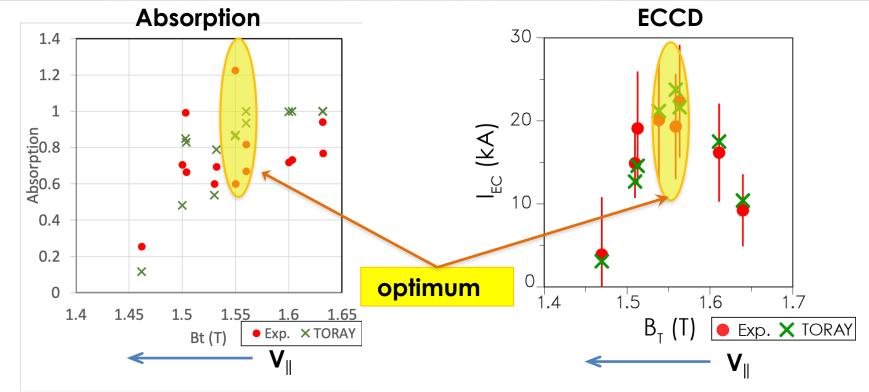

 TORAY modeling typically predicts highest ECCD efficiency occurs for less than 100% absorption




For Top Launch, Highest ECCD Predicted for Optimal Tail Electron Absorption

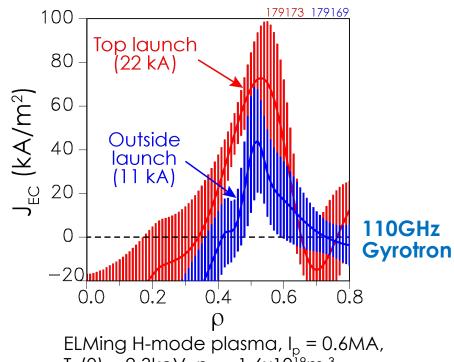
 TORAY modeling typically predicts highest ECCD efficiency occurs for less than 100% absorption

Highest ECCD via Top Launch Obtained for Bt Value Optimized for Sufficient Damping on Tail Electrons

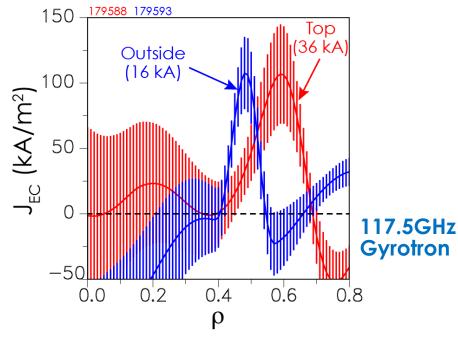


ELMing H-mode plasma $<I_p>= 0.6MA, <T_e(0)> = 2.3keV, <n_e>= 1.5x10^{19}m^{-3}$

Highest ECCD via Top Launch Obtained for Bt Value Optimized for Sufficient Damping on Tail Electrons

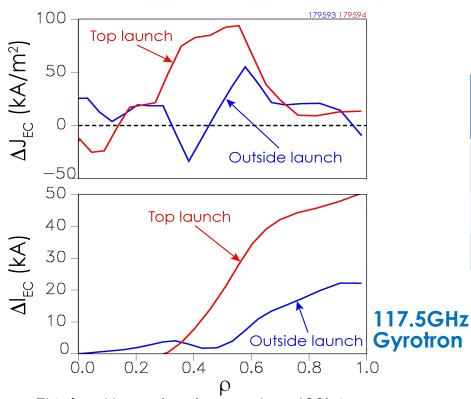


ELMing H-mode plasma $\langle I_p \rangle = 0.6MA, \langle T_e(0) \rangle = 2.3 \text{keV}, \langle n_e \rangle = 1.5 \times 10^{19} \text{m}^{-3}$

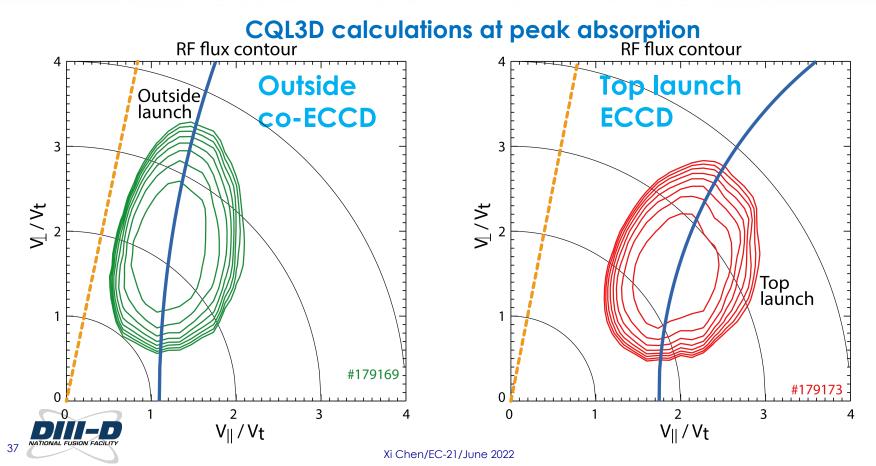


Greatly Enhanced ECCD in Mid-Radii Observed via Top Launch **ECCD Compared to Outside Co-ECCD Launch**

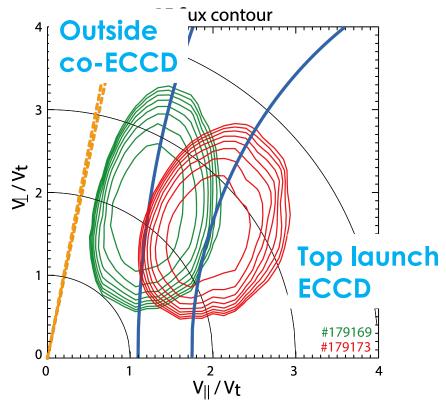
Loop voltage analysis for MSE Efits with local $\cos^2(k\psi)$ representation


 $T_e(0) = 2.3 \text{keV}, n_e = 1.6 \times 10^{19} \text{m}^{-3}$

ELMing H-mode plasma, $I_p = 0.6MA$, $T_{p}(0) = 3.0 \text{keV}, n_{p} = 1.8 \times 10^{19} \text{m}^{-3}$


Direct MSE Analysis Confirms ECCD is More than Double for Top Launch, Consistent with TORAY and CQL3D

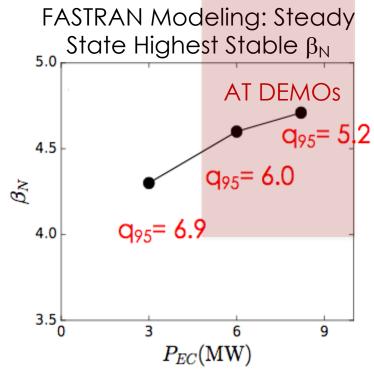
ECCD (kA/MW)	Top launch	LFS co- ECCD
Measure- ment	70	25
TORAY	63	27
CQL3D	68	31


ELMing H-mode plasma, $I_p = 600kA$, $T_e(0) = 3.5keV$, $n_e = 1.9x10^{19} m^{-3}$, $P_{Ec} = 0.60MW$

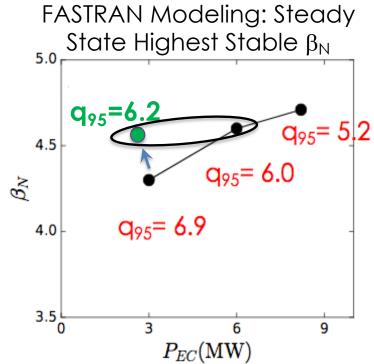
EC Wave via Top Launch Interacts with Higher $V_{||}$ Electrons, Further Away from Trapping Boundary

EC Wave via Top Launch Interacts with Higher $V_{||}$ Electrons, Further Away from Trapping Boundary

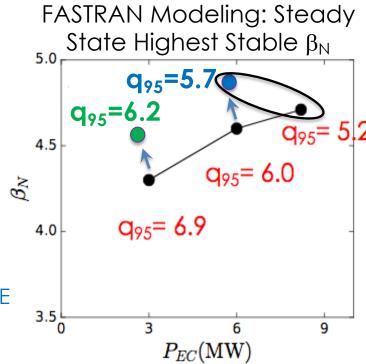
CQL3D calculations at peak current drive


Outline

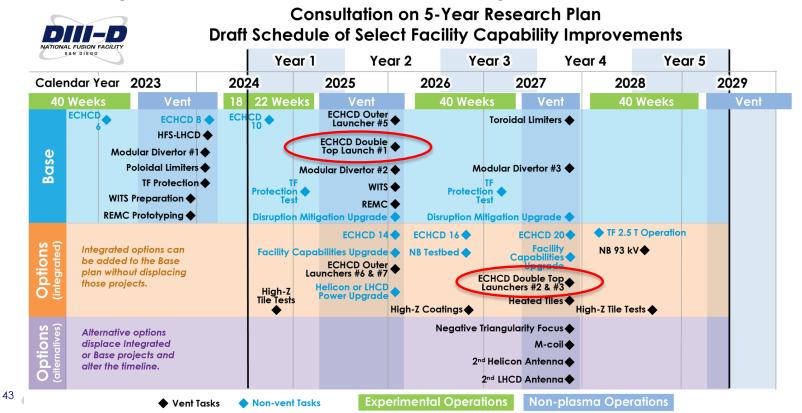
- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high v_{||} electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors


• Most DEMO design studies (e.g. Aries-AT, ACT1, CAT-DEMO) operate in the range β_N =4-6 with q_{95} =4-6

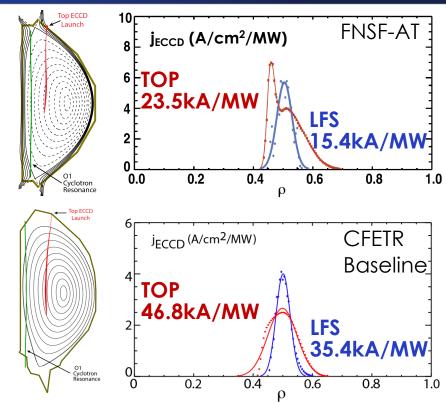
 Traditional approach with outside-launch 110 GHz gyrotrons predicted to require 6+ MW to reach target range of DEMO designs¹



- Most DEMO design studies (e.g. Aries-AT, ACT1, CAT-DEMO) operate in the range β_N =4-6 with q_{95} =4-6
- Traditional approach with outside-launch 110 GHz gyrotrons predicted to require 6+ MW to reach target range of DEMO designs¹
- Instead, apply the same power using ~2x more efficient top launch, broader j, higher β_N & lower q_{95} can be accessed
 - ➤ Nearly the same performance with 3MW TOP as 6 MW OUTSIDE



- Most DEMO design studies (e.g. Aries-AT, ACT1, CAT-DEMO) operate in the range β_N =4-6 with q_{95} =4-6
- Traditional approach with outside-launch 110 GHz gyrotrons predicted to require 6+ MW to reach target range of DEMO designs¹
- Instead, apply the same power using ~2x more efficient top launch, broader j, higher β_N & lower q_{95} can be accessed
 - ➤ Nearly the same performance with 3MW TOP as 6 MW OUTSIDE
 - ➤ 3MW TOP 117.5 GHz + 3MW OUTSIDE 110 GHz would be a reasonable alternative to 9MW OUTSIDE



- 2nd top launch system installed and operating, 3rd pre-funded, and more proposed
 - waveguide switch utilized and dedicated gyrotron is not needed

Predictions for FNSF-AT, DEMO, CFETR Suggest Substantial Improvement in Efficiency via Top Launch ECCD

- Modeling for FNSF-AT shows > 50% higher off-axis CD efficiency for top launch ECCD¹, similarly for DEMO²
- 35% improvement in ECCD efficiency at ρ~0.5 is found in initial modeling for CFETR baseline scenario³

¹ R. Prater, et al, APS-DPP (2012) ² E. Poli, et al, NF 53 (2013) 013011

³ Xi Chen, et al., EPJ Web of Conferences, 203, 01004 (2019)

Higher Off-Axis Electron Cyclotron Current Drive Via 'Top Launch' Approach Demonstrated on the DIII-D Tokamak

- New top launch ECCD system installed on DIII-D to test this high ECCD efficiency approach
- Experiments validated main tenets of top launch ECCD
 - Geometry allows selective wave interaction with high V_{II} electrons yielding high CD efficiency
 - Long absorption path compensates for inherently weak damping at high V_{11}
 - \triangleright Highest ECCD efficiency for optimal absorption on high V_{\parallel} tail electrons
- Simulations of FNSF-AT, DEMO and CFETR support top launch ECCD as an improved efficiency off-axis current drive technique for future reactors
 - Top Launch Lines in DIII-D is increasing to advance towards high-β AT scenario physics goals

