Propagation properties of electron cyclotron wave with helical wavefront in magnetized plasma

Toru I. Tsujimura
National Institute for Fusion Science, Japan

Shin Kubo

Chubu University, Japan

Reference: T. I. Tsujimura and S. Kubo, Phys. Plasmas 28, 012502 (2021)

Contents

I. Introduction

II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation

III. Summary and outlook

Waves in magnetized plasmas

- Various waves emitted from magnetized plasmas - Cyclotron waves or RF (radiofrequency) waves for heating and diagnostics in fusion plasma
- Knowledge of the propagation properties
- Plane wave
- Phase:

position vector
- Advanced methods for the description of wave beams*
*. Y. Dodin et al., Phys. Plasmas 26, 072110 (2019),
K. Yanagihara et al., Phys. Plasmas 26, 072111 (2019).

Gyclotron motion of electrons emits twisted photons (high-harmonic optical vortices)

helical wavefront

donut-shape intensity distribution

UltraViolet Synchrotron Orbital Radiation Facility
UVSOR Synchrotron Facility at Institute for Molecular Science, Japan
Higher-harmonic synchrotron radiation from undulators in a UV range has helical wavefront.

Numerical simulation shows

 coherent cyclotron emission from electrons has helical wavefront.Y. Goto, S. Kubo, and T. I. Tsujimura, New J. Phys. 23, 063021 (2021)
induced VORTex Electron Cyclotron Emission Device
New iVORTECE device is under development at NIFS.

Gyclotron motion of electrons emits twisted photons

Radiation field intensity from an electron

Theory shows that a single free electron in circular motion emits twisted photons carrying orbital angular momentum (OAM) in addition to spin angular momentum.*
*M. Katoh et al., Phy. Rev. Lett. 118, 094801 (2017); Sci. Rep. 7, 6130 (2017)

- Ubiquitous in nature
- Phase:
topological charge

$$
l \varphi+k_{z} z-\omega t
$$

azimuthal angle around the optical axis 2

How an optical vortex propagates in magnetized plasma? Beneficial for heating or diagnostics in fusion plasma?

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Maxwell equations in magnetized plasma

$$
\begin{gathered}
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}, \\
\nabla \times \boldsymbol{B}=\mu_{0}\left(\boldsymbol{j}+\varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}\right)
\end{gathered}
$$

Assuming a monochromatic wave in time: $\mathrm{e}^{\mp \mathrm{i} \omega t}$
Using the dielectric tensor: $\boldsymbol{\varepsilon}_{r}$

$$
\nabla \times(\nabla \times \boldsymbol{E})-k_{0}^{2} \boldsymbol{\varepsilon}_{r} \cdot \boldsymbol{E}=\mathbf{0}
$$

Electric field of an optical vortex

Start with a sufficiently general ansatz for the wavefield of an optical vortex

$$
\boldsymbol{E}(r, \varphi, z)=\frac{1}{2}\left\{\tilde{\boldsymbol{E}}(r, \varphi, z) \alpha r^{|l|} \exp [\mathrm{i}(l \varphi+\psi(r, \varphi, z)-\omega t)]+\text { c.c. }\right\}
$$

complex-valued phase function: $\psi(r, \varphi, z)=\int_{0}^{z} k_{z}\left(r, \varphi, z^{\prime}\right) \mathrm{d} z^{\prime}$ z component of the local wave vector: $k_{z}=\partial_{z} \psi$

When \tilde{E} and k_{z} are constant on space, this simple form of the optical vortex satisfies the Maxwell equations in the vacuum without any approximation.
The wavefield can have a parallel component to the propagation direction z even in the vacuum although a plane wave is a transverse wave without a parallel component.*
*T. Takahashi, Kogaku (Jpn. J. Opt.) 47, 30 (2018)

Complex eikonal approximation

(1) Short wavelength condition

$$
\epsilon=\frac{\lambda_{0}}{L_{0}} \ll 1
$$

scale length

$$
\begin{aligned}
\nabla E_{\sigma} \approx \frac{1}{2}\left\{\mathrm{i}\left(-\mathrm{i} \frac{|l|}{r} \nabla r+l \nabla \varphi+k_{z} \nabla z\right) \tilde{E}_{\sigma} s\right. & + \text { c.c. }\}\}=\alpha r^{l l} \exp [\mathrm{i}(l \varphi+\psi-\omega t)]
\end{aligned}
$$

This formula suggests the "wave vector" of the optical vortex.

$$
\begin{aligned}
\boldsymbol{k} & =-\mathrm{i} \frac{|l|}{r} \nabla r+l \nabla \varphi+k_{z}(r, \varphi, z) \nabla z \\
& =-\mathrm{i} \frac{|l|}{r} \boldsymbol{e}_{r}+\frac{l}{r} \boldsymbol{e}_{\varphi}+k_{z} \boldsymbol{e}_{z}
\end{aligned}
$$

Simple approach to exclude the phase singularity in the ordering assumptions

$$
r \geq r_{0}>0
$$

A natural approach would be look for a solution such that

$$
{ }^{(1)}|\boldsymbol{k}| \sim\left|k_{z}\right| \sim k_{0}=\frac{2 \pi}{\lambda_{0}},{ }^{(2)}\left|\nabla k_{\sigma}\right| \sim \frac{k_{0}}{L_{0}}
$$

(1) $|\boldsymbol{k}|^{2}=\frac{2 l^{2}}{r^{2}}+\left|k_{z}\right|^{2} \leq \frac{2 l^{2}}{r_{0}^{2}}+\left|k_{z}\right|^{2}$
$\left|k_{z}\right| \sim k_{0}=\frac{2 \pi}{\lambda_{0}}$ and $\frac{l^{2}}{r_{0}^{2}} \leq \frac{4 \pi^{2}}{\lambda_{0}^{2}}$
$\therefore \quad r_{0} \geq \frac{|l|}{2 \pi} \lambda_{0}$
(2) $\nabla \boldsymbol{k}=\frac{\partial k_{z}}{\partial r} \nabla r \otimes \nabla z+\frac{\partial k_{z}}{\partial \varphi} \nabla \varphi \otimes \nabla z+\frac{\partial k_{z}}{\partial z} \nabla z \otimes \nabla z$

$$
+i \frac{|l|}{r^{2}} \nabla r \otimes \nabla r+l \nabla \nabla \varphi-i \frac{|l|}{r} \nabla \nabla r
$$

$$
\left|\frac{\partial k_{z}}{\partial r}\right| \sim \frac{k_{0}}{L_{0}}, \quad\left|\frac{\partial k_{z}}{\partial \varphi}\right| \sim \frac{k_{0} r_{0}}{L_{0}}, \quad\left|\frac{\partial k_{z}}{\partial z}\right| \sim \frac{k_{0}}{L_{0}} \quad \text { and } \quad \frac{|l|}{r_{0}^{2}} \leq \frac{k_{0}}{L_{0}}
$$

$\nabla \nabla r \sim 1 / r, \nabla \nabla \varphi \sim 1 / r^{2}$
\otimes dyadic operator

$$
r_{0}=\max \left\{\frac{|l|}{2 \pi} \lambda_{0}, \sqrt{\frac{|l|}{2 \pi} \lambda_{0} L_{0}}\right\}
$$

$$
\frac{r_{0}^{2} \geq \frac{|l|}{2 \pi} \lambda_{0} L_{0}}{}
$$

Limited propagation distance

$$
\nabla s=i[k+\underbrace{\left.\int_{0}^{z}\left(\frac{\partial k_{z}\left(r, \varphi, z^{\prime}\right)}{\partial r} \nabla r+\frac{\partial k_{z}\left(r, \varphi, z^{\prime}\right)}{\partial \varphi} \nabla \varphi\right) \mathrm{d} z^{\prime}\right]}_{0} \sqrt{\delta \boldsymbol{k} \sim k_{0} \frac{|z|}{L_{0}}}
$$

$\delta \boldsymbol{k}$ can be neglected as compared to \boldsymbol{k} only for a small propagation distance.

$$
|z| \ll L_{0}
$$

This is an ad hoc assumption to reduce the problem to an algebraic equation rather than a partial differential equation on the phase function.

Wave electric field and helical wavefront structure

$$
\begin{gathered}
\nabla \times \boldsymbol{E}=\frac{1}{2}[\nabla s \times \tilde{\boldsymbol{E}}+s \nabla \times \tilde{\boldsymbol{E}}+\text { c.c. }] \quad s=\alpha r^{l l} \exp [\mathrm{i}(l \varphi+\psi-\omega t)] \\
\nabla \times(\nabla \times \boldsymbol{E})= \\
\frac{1}{2}[\{\boldsymbol{k} \otimes \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{I}\} \tilde{\boldsymbol{E}} s \\
\left.+O\left(k_{0}^{2} \epsilon\right)+O\left(k_{0}^{2} \frac{|z|}{L_{0}}\right)+\text { c.c. }\right]
\end{gathered}
$$

Propagation direction "as a beam"

$$
\boldsymbol{k}_{z}=\overline{\boldsymbol{k}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} \boldsymbol{k} \mathrm{~d} \varphi=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{z} \mathrm{~d} \varphi\right) \boldsymbol{e}_{z} \equiv \bar{k}_{z} \boldsymbol{e}_{z}
$$

Wavefront structure in the eikonal approximation
$E_{\sigma} \propto \exp [\operatorname{iS}(r, \varphi, z)]$

$$
S(\boldsymbol{r})=-\mathrm{i}|l| \log r+l \varphi+\psi,
$$

$$
\begin{aligned}
& \nabla S(\boldsymbol{r}) \approx \boldsymbol{k}=-\mathrm{i} \frac{|l|}{r} \nabla r+l \nabla \varphi+k_{z} \nabla z, \\
& \quad \exp [\mathrm{i} S(\boldsymbol{r})]=r^{|l|} \exp [\mathrm{i}(l \varphi+\psi)] .
\end{aligned}
$$

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Wave electric field redefined in the coordinate system: $B_{0}=B_{0} \epsilon_{z}$

Uniform and homogeneous plasma in both space and time
$\boldsymbol{E}=\frac{1}{2}\left\{\tilde{\boldsymbol{E}} \alpha\left(r^{\prime}\right)^{\prime \mid l} \exp \left[\mathrm{i}\left(l \varphi^{\prime}+\psi^{\prime}-\omega t\right)\right]+\right.$ c.c. $\}$
propagation direction Z^{\prime}

$$
\begin{gathered}
r^{\prime}=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}, \quad \varphi^{\prime}=\tan ^{-1} \frac{y^{\prime}}{x^{\prime}} \\
\psi^{\prime}=\int_{0}^{z^{\prime}} k_{z^{\prime}}\left(r^{\prime}, \varphi^{\prime}, z^{\prime \prime}\right) \mathrm{d} z^{\prime \prime}
\end{gathered}
$$

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$\boldsymbol{k}=\boldsymbol{k}_{r^{\prime}}+\boldsymbol{k}_{\varphi^{\prime}}+\boldsymbol{k}_{z^{\prime}}$,
$\boldsymbol{k}_{r^{\prime}}=-\mathrm{i} \frac{|l|}{r^{\prime}}\left(\cos \varphi^{\prime} \cos \theta, \sin \varphi^{\prime},-\cos \varphi^{\prime} \sin \theta\right)$,
$\boldsymbol{k}_{\varphi^{\prime}}=\frac{l^{\prime}}{r^{\prime}}\left(-\sin \varphi^{\prime} \cos \theta, \cos \varphi^{\prime}, \sin \varphi^{\prime} \sin \theta\right)$,

$$
\begin{gathered}
\boldsymbol{k}_{z^{\prime}}=\left(k_{z^{\prime}} \sin \theta, 0, k_{z^{\prime}} \cos \theta\right), \\
\bar{k}_{z^{\prime}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{z^{\prime}} \mathrm{d} \varphi^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& P(\omega)=1-\frac{\omega_{\mathrm{pe}}^{2}}{\omega^{2}} \\
& R(\omega)=1-\frac{\omega_{\mathrm{pe}}^{2}}{\omega\left(\omega-\omega_{\mathrm{ce}}\right)} \\
& L(\omega)=1-\frac{\omega_{\mathrm{pe}}^{2}}{\omega\left(\omega+\omega_{\mathrm{ce}}\right)} \\
& S(\omega)=\frac{1}{2}(R+L)=1-\frac{\omega_{\mathrm{pe}}^{2}}{\omega^{2}-\omega_{\mathrm{ce}}^{2}} \\
& D(\omega)=\frac{1}{2}(R-L)=-\frac{\omega_{\mathrm{ce}} \omega_{\mathrm{pe}}^{2}}{\omega\left(\omega^{2}-\omega_{\mathrm{ce}}^{2}\right)}
\end{aligned}
$$

$$
\boldsymbol{\varepsilon}_{r}(\omega)=\left(\begin{array}{ccc}
S(\omega) & -\mathrm{i} D(\omega) & 0 \\
\mathrm{i} D(\omega) & S(\omega) & 0 \\
0 & 0 & P(\omega)
\end{array}\right)
$$

$$
\boldsymbol{\varepsilon}_{r}^{*}(-\omega)=\boldsymbol{\varepsilon}_{r}(\omega)
$$

Stix notations
B_{0}
static magnetic field

Wave (telegraphic) equation

$$
\frac{1}{2}\left[\boldsymbol{\Lambda}(\omega, \boldsymbol{k}) \cdot \tilde{\boldsymbol{E}} s^{\prime}+\boldsymbol{\Lambda}^{*}(-\omega, \boldsymbol{k}) \cdot \tilde{\boldsymbol{E}}^{*}\left(s^{\prime}\right)^{*}\right]=\mathbf{0}
$$

$$
s^{\prime} \equiv \alpha\left(r^{\prime}\right)^{\prime l} \exp \left[\mathrm{i}\left(l \varphi^{\prime}+\psi^{\prime}-\omega t\right)\right]
$$

cold-plasma tensor evaluated at the complex wave vector \boldsymbol{k}

$$
\frac{\boldsymbol{\Lambda}(\omega, \boldsymbol{k})}{\text { not Hermitian }} \equiv \underbrace{\boldsymbol{k} \otimes \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{I}}_{\text {symmetric }}+k_{0}^{2} \boldsymbol{\varepsilon}_{r}(\omega)
$$

\rightarrow different propagation properties in comparison to a plane wave not simply account for dispersion, but include diffraction

$$
\begin{aligned}
\Lambda_{m n}(\omega, \boldsymbol{k})= & \Lambda_{0, m n}\left(\omega, \boldsymbol{k}_{R}\right)-\frac{1}{2}\left(\boldsymbol{k}_{I} \otimes \boldsymbol{k}_{I}\right): \frac{\partial^{2} \Lambda_{0, m n}\left(\omega, \boldsymbol{k}_{R}\right)}{\partial \boldsymbol{k}_{R} \partial \boldsymbol{k}_{R}} \\
& +\mathrm{i} \boldsymbol{k}_{I} \cdot \frac{\partial \Lambda_{0, m n}\left(\omega, \boldsymbol{k}_{R}\right)}{\partial \boldsymbol{k}_{R}}+\mathrm{i} k_{0}^{2} \varepsilon_{r, m n}^{a}, \quad \text { inhe symbor }{ }^{\text {Themeneneous wave }} \text { procuct fin }
\end{aligned}
$$

$$
\boldsymbol{k}_{R}=\operatorname{Re} \boldsymbol{k}
$$

$$
\boldsymbol{k}_{I}=\operatorname{Im} \boldsymbol{k}
$$

$$
\boldsymbol{\Lambda}_{0}\left(\omega, \boldsymbol{k}_{R}\right) \equiv \boldsymbol{k}_{R} \otimes \boldsymbol{k}_{R}-\left(\boldsymbol{k}_{R} \cdot \boldsymbol{k}_{R}\right) \boldsymbol{I}+k_{0}^{2} \boldsymbol{\varepsilon}_{r}^{h}
$$

Electromagnetic wave energy is conserved when propagating away from EC resonances

The Poynting vector of a monochromatic wave with complex \boldsymbol{n}

$$
\boldsymbol{n}=(c / \omega) \boldsymbol{k}
$$

$$
\begin{aligned}
\boldsymbol{S} & =\frac{1}{\mu_{0}} \overline{\boldsymbol{E} \times \boldsymbol{B}} \text { the second harmonic oscillating terms are annihilated by the time average } \\
& \approx \frac{1}{4 c \mu_{0}}\left\{|\tilde{\boldsymbol{E}}|^{2}\left(\boldsymbol{n}+\boldsymbol{n}^{*}\right)-\left(\tilde{\boldsymbol{E}}^{*} \cdot \boldsymbol{n}\right) \tilde{\boldsymbol{E}}-\left(\tilde{\boldsymbol{E}} \cdot \boldsymbol{n}^{*}\right) \tilde{\boldsymbol{E}}^{*}\right\}|\alpha|^{2}\left(r^{\prime}\right)^{2|l|} \mathrm{e}^{-2 \operatorname{Im} \psi^{\prime}}
\end{aligned}
$$

Divergence of the Poynting vector gives the source or the sink of the wave energy.

$$
\nabla \cdot \boldsymbol{S} \approx-k_{0}^{2} \frac{|\alpha|^{2}\left(r^{\prime}\right)^{2|l|} \mathrm{e}^{-2 \operatorname{Im} \psi^{\prime}}}{2 \mu_{0} \omega} \tilde{\boldsymbol{E}}^{*} \cdot \boldsymbol{\varepsilon}_{r}^{a} \cdot \tilde{\boldsymbol{E}}=0
$$

The wave energy is conserved when ε_{r} is Hermitian.
This energy conservation is satisfied even if \boldsymbol{n} is complex due to the helical wavefront structure.

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Parallel propagation: $\theta=0 \& k_{z} / / B_{0}$

Solvability condition

$$
\begin{gathered}
\operatorname{det}\left[\boldsymbol{n} \otimes \boldsymbol{n}-(\boldsymbol{n} \cdot \boldsymbol{n}) \boldsymbol{I}+\boldsymbol{\varepsilon}_{r}\right]=0 \\
\operatorname{det}\left(\begin{array}{ccc}
S-n_{z}^{2}-n_{l}^{2} & -\mathrm{i} D-\mathrm{isgn}(l) n_{l}^{2} & -\mathrm{i} n_{l} n_{z} \\
\mathrm{i} D-\mathrm{isgn}(l) n_{l}^{2} & S-n_{z}^{2}+n_{l}^{2} & \operatorname{sgn}(l) n_{l} n_{z} \\
-\mathrm{i} n_{l} n_{z} & \operatorname{sgn}(l) n_{l} n_{z} & P
\end{array}\right)=0 \\
n_{l} \equiv \frac{c}{\omega} \frac{|l|}{r^{\prime} \mathrm{e}^{\mathrm{i} g n}\left(l()^{\prime}\right.}, \quad r^{\prime}=r=\sqrt{x^{2}+y^{2}}, \quad \varphi^{\prime}=\varphi=\tan ^{-1} \frac{y}{x} \\
\text { Refractive index } n_{z^{\prime}}=n_{z} \\
n_{z}^{2}=R(\equiv S+D), \quad L(\equiv S-D)
\end{gathered}
$$

right-handed (R) circularly polarized wave left-handed (L) circularly polarized wave

Same as a plane wave

$$
\omega_{\mathrm{ce}} / \omega=0.73\left(f=77 \mathrm{GHz}, B_{0}=2 \mathrm{~T}\right)
$$

T. I. Tsujimura \& S. Kubo, Phys. Plasmas 28, 012502 (2021)

Electric field polarizations are different and expressed in 3D

"vortex" R mode

$$
\tilde{\boldsymbol{E}}_{\mathrm{R}}=[1, \mathrm{i}, 0] \tilde{E}_{x} \quad(l \geq 0),
$$

$$
\tilde{\boldsymbol{E}}_{\mathrm{R}}=\left[1, \mathrm{i} \frac{P D+n_{l}^{2}\left(P-n_{\mathrm{R}}^{2}\right)}{P D-n_{l}^{2}\left(P-n_{\mathrm{R}}^{2}\right)}, \quad 2 \mathrm{i} \frac{n_{l} n_{\mathrm{R}} D}{P D-n_{l}^{2}\left(P-n_{\mathrm{R}}^{2}\right)}\right] \tilde{E}_{x} \quad(l<0)
$$

"vortex" L mode

$$
\begin{array}{ccc}
\tilde{\boldsymbol{E}}_{\mathrm{L}}=\left[\begin{array}{cll}
1,-\mathrm{i} \frac{P D-n_{l}^{2}\left(P-n_{\mathrm{L}}^{2}\right)}{P D+n_{l}^{2}\left(P-n_{\mathrm{L}}^{2}\right)}, & 2 \mathrm{i} \frac{n_{l} n_{\mathrm{L}} D}{P D+n_{l}^{2}\left(P-n_{\mathrm{L}}^{2}\right)}
\end{array}\right] \tilde{E}_{x} & (l \geq 0) & \begin{array}{l}
\text { not } \mathrm{L} \text { polarization due to a parallel } \\
\text { component }
\end{array} \\
\tilde{\boldsymbol{E}}_{\mathrm{L}}=[1,-\mathrm{i}, 0] \tilde{E}_{x} & (l<0) . & \text { Pure } \mathrm{L} \text { polarization }
\end{array}
$$

$$
\begin{array}{cc}
\nabla \cdot \boldsymbol{D} \approx \frac{1}{2}\left[\mathrm{i} \boldsymbol{k} \cdot\left\{\varepsilon_{0} \boldsymbol{\varepsilon}_{r}(\omega) \cdot \tilde{\boldsymbol{E}} s\right\}-\mathrm{i} \boldsymbol{k}^{*} \cdot\left\{\varepsilon_{0} \boldsymbol{\varepsilon}_{r}^{*}(-\omega) \cdot \tilde{\boldsymbol{E}}^{*} s^{*}\right\}\right]=0 & \text { satisfied } \\
\tilde{\boldsymbol{E}}_{\mathrm{R}} \cdot \tilde{\boldsymbol{E}}_{\mathrm{L}}^{*} \neq 0 & \text { not ortho }
\end{array}
$$

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Perpendicular propagation: $\theta=\pi / 2 \& \boldsymbol{k}_{x} \perp \boldsymbol{B}_{0}$

Solvability condition

$\operatorname{det}\left(\begin{array}{ccc}S & -\mathrm{i} D+\operatorname{sgn}(l) n_{l} n_{x} & \operatorname{in} n_{l} n_{x} \\ \mathrm{i} D+\operatorname{sgn}(l) n_{l} n_{x} & S-n_{x}^{2}+n_{l}^{2} & \operatorname{isgn}(l) n_{l}^{2} \\ \operatorname{in} n_{l} n_{x} & i \operatorname{sgn}(l) n_{l}^{2} & P-n_{x}^{2}-n_{l}^{2}\end{array}\right)=0$

$$
n_{l} \equiv \frac{c}{\omega} \frac{|l|}{r^{\prime} \mathrm{e}^{\mathrm{isgn}(l) \varphi^{\prime}}}, \quad r^{\prime}=\sqrt{y^{2}+z^{2}}, \quad \varphi^{\prime}=\tan ^{-1} \frac{y}{-z}
$$

Relations of electric field components to calculate the polarization

$$
\begin{aligned}
\tilde{E}_{x}= & \frac{1}{S}\left\{\mathrm{i} D-\operatorname{sgn}(l) n_{l} n_{\sigma}\right\} \tilde{E}_{y}-\mathrm{i} \frac{n_{l} n_{\sigma}}{S} \tilde{E}_{z}, \\
\tilde{E}_{z}= & \frac{\left(D^{2}+n_{l}^{2} n_{\sigma}^{2}\right)-S\left(S-n_{\sigma}^{2}+n_{l}^{2}\right)}{n_{l}\left\{D n_{\sigma}-\operatorname{isgn}(l) n_{l} n_{\sigma}^{2}+\operatorname{isgn}(l) n_{l} S\right\}} \tilde{E}_{y}, \\
& (\sigma=\mathrm{O}, \mathrm{X}),
\end{aligned}
$$

Refractive index $n_{z^{\prime}}=n_{x}$

$$
\begin{gathered}
n_{x}^{4}+\alpha n_{x}^{2}+\beta=0 \\
\alpha \equiv-\left(P+\frac{R L}{S}\right)-n_{l}^{2}\left(\frac{P}{S}-1\right) \\
\beta \equiv \frac{P R L}{S}+n_{l}^{2}\left(P-\frac{R L}{S}\right) \\
\therefore n_{x}^{2}=\frac{1}{2}\left(-\alpha \pm \sqrt{\alpha^{2}-4 \beta}\right),
\end{gathered}
$$

- The terms on n_{I} are additions in a plane wave.
- "vortex" O (ordinary) mode
- "vortex" X (extraordinary) mode
- noticeable when $/ / r$ ' is large
- Modulated with the azimuthal angle $\boldsymbol{\phi}^{\prime}$
- started with k_{z} a function of r and ϕ
T. I. Tsujimura \& S. Kubo, Phys. Plasmas 28, 012502 (2021)

Refractive indices of "vortex" $\mathbf{0}$ and X modes in the ideal limit $\left(/ / r^{\prime}=k_{0}\right)$

$\omega_{\mathrm{ce}} / \omega=0.73\left(f=77 \mathrm{GHz}, B_{0}=2 \mathrm{~T}\right)$

- Both refractive indices deviate from those in plane wave.
- strongly modulated with ϕ
- The "vortex" O mode is influenced by the upper hybrid resonance (UHR) from the lower n_{e} side.
- affected by \boldsymbol{B}_{0}
- The "vortex" X mode experiences UHR from the higher n_{e} side and can propagate in the higher n_{e} region.

Electric fields of "vortex" $\mathbf{0}$ and X modes in the ideal limit $\left(/ / r\right.$ " $\left.=k_{0}\right)$

Avg. E_{X} (vortex)	------- E_{X} (plane)
Avg. E_{y} (vortex)	$\ldots-E_{y}$ (plane)
Avg. E_{z}^{\prime} (vortex)	- E_{z} (plane)

- The E fields entirely deviate from those in a plane wave.
- "Vortex" O mode
- not pure linear polarization directed in \boldsymbol{B}_{0}
- has a component parallel to the propagation direction
- "Vortex" X mode
- has a component parallel to \boldsymbol{B}_{0}
- Expectation that the \boldsymbol{E} fields of both modes become similar to each other around UHR when I / r^{\prime} can be much larger.
- $/ / r^{\prime}>k_{0}$ is not accessible in this theory.
- accessible when the ordering assumptions can be relaxed to treat smaller r_{0} and a PDE for a complex phase function can be solved \rightarrow future work
T. I. Tsujimura \& S. Kubo, Phys. Plasmas 28, 012502 (2021)

Does more-advanced theory suggest direct mode conversion?

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Propagation of an EC wave with a helical wavefront with 3D simulations

- The theory suitable analytically as in a plane wave
a cube with a side
length of 20 mm
Mesh size: max. 0.3 mm , min. 0.03 mm
- Wave amplitude restricted to a finite beam size for practical use a Laguerre-Gaussian beam
- Commercial COMSOL Multiphysics with RF solver
- finite element method
- scattering boundary condition
Electron density

$$
\begin{aligned}
& \text { Electric field } \\
& \qquad \begin{aligned}
E_{z}(x, y, z)= & E_{0}\left(\frac{r^{2}}{w^{2}(x)}\right)^{|l|} \frac{w_{0}}{w(x)} \\
& \times \exp \left[-\frac{r^{2}}{w(x)^{2}}+\mathrm{i}\left\{-k_{0} \frac{r^{2}}{2 R(x)}-l \varphi+(|l|+1) \zeta(x)\right\}\right] \\
& \text { at } \quad x=0,
\end{aligned} \quad r^{2}=y^{2}+z^{2}, \quad \varphi=\tan ^{-1} \frac{y}{-z},
\end{aligned}
$$

$$
\begin{array}{cc}
P=1-\frac{\omega_{p o}^{2}}{\omega\left(\omega+i_{0}\right.} & n_{\mathrm{e}}(x)=n_{\mathrm{e}, \text { max }} x / L_{n} \\
R=1-\frac{\omega_{p e}^{2}}{\omega\left(\omega+i_{0}\right.} & n_{\mathrm{e}, \text { max }}=5 \times 10^{19} \mathrm{~m}^{-3} \\
L=1-\frac{\psi_{i c}}{\omega\left(\omega+\omega_{e}\right)} & L_{n}=20 \mathrm{~mm}
\end{array}
$$

$$
w(x)=w_{0} \sqrt{1+\left(\frac{x-x_{R}}{x_{R}}\right)^{2}}, \quad x_{R}=\frac{\pi w_{0}^{2}}{\lambda_{0}}
$$

$$
S=\frac{1}{2}(R+L)
$$

Uniform plasma in y and z directions

$$
R(x)=\left(x-x_{R}\right)\left\{1+\left(\frac{x_{R}}{x-x_{R}}\right)^{2}\right\}, \quad \zeta(x)=\tan ^{-1} \frac{x-x_{R}}{x_{R}}
$$

$$
f=77 \mathrm{GHz}, v_{0}=0.01 \omega, B_{z 0}=2 \mathrm{~T}, x_{R}=10 \mathrm{~mm}, w_{0}=3.5 \mathrm{~mm}
$$

In the case of $I=0$, the 0 mode propagates

- The excited linearly polarized E_{z} parallel to \boldsymbol{B}_{0} propagates in the x direction.
- Negligible E_{x}

Almost axisymmetric phase E_{z}

a part of the 0 mode is suggested to be converted to the high-wavenumber X mode

$I=1, x_{R}=10 \mathrm{~mm}, \omega_{\mathrm{ce}} / \omega=0.73\left(f=77 \mathrm{GHz}, B_{0}=2 \mathrm{~T}\right)$

(a) E_{z}

(b) E_{X}

- The excited LG beam E_{z} propagates to UHR.
- Diffuse outward over the UHR layer
- Ex parallel to the propagation direction with higher wavenumber is excited at UHR and propagates to the higher n_{e} region.
- The amplitude E_{x} is larger around the optical axis.
- A part of E_{z} with the O-mode polarization is converted into E_{X} with the X-mode polarization.
$I=1, x_{R}=10 \mathrm{~mm}, \omega_{\mathrm{ce}} / \omega=0.73\left(f=77 \mathrm{GHz}, B_{0}=2 \mathrm{~T}\right)$ $x=0 \mathrm{~mm} \quad x=20 \mathrm{~mm}$

- $\quad I=1$ in $E_{z}, I=0$ in E_{x}
- The topological charge of E_{x} is one smaller than that of E_{z} due to the factor of $e^{-i \phi}$ in the theory.

Similarly, in the case of $l=2$,

a part of the 0 mode is suggested to be converted to the high-wavenumber X mode

$$
I=2, x_{R}=10 \mathrm{~mm}, \omega_{\mathrm{ce}} / \omega=0.73\left(f=77 \mathrm{GHz}, B_{0}=2 \mathrm{~T}\right)
$$

(a) E_{z}
(b) E_{X}

E_{X} with the high wavenumber is excited at UHR.

The topological charge of E_{x} is $/=1$ around the optical axis.

Contents

I. Introduction
II. Propagation of an EC wave with a helical wavefront in magnetized plasma Theory
A. Wave with a helical wavefront
B. Wave (Telegraphic) equation in cold plasma
C. Parallel propagation
D. Perpendicular propagation

3D simulation
III. Summary and outlook

Summary

- Propagation properties of EC waves with helical wavefronts are investigated theoretically in cold uniform magnetized plasma.
- The effects of the helical wavefronts on the wave fields are described.
- These effects become significant as the topological charge of the vortex EC wave increases or the distance from the optical axis becomes small.
- The different properties of propagation are also confirmed in COMSOL simulations with LG beams.
- It is found that a part of the O-mode LG beam with the topological charge / excited at the lower n_{e} region is converted into the high-wavenumber X-mode LG beam with I - 1 at UHR.

Outlook

To demonstrate the new propagation properties of vortex EC waves in plasma heating experiments, off-axis spiral-phase mirrors were developed to generate an optical vortex with designed / in millimeter waves.

- generated vortex mm waves will be injected into fusion plasma
- to verify whether an optical vortex can be a new tool to efficiently heat high- n_{e} plasma

spiral phase mirror

T. I. Tsujimura et al., Rev. Sci. Instrum. 93, 043507 (2022)

