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Waves in magnetized plasmas

• Various waves emitted from magnetized plasmas

- Cyclotron waves or RF (radiofrequency) waves for 

heating and diagnostics in fusion plasma 

• Knowledge of the propagation properties

- Plane wave 
- Phase: 

- Advanced methods for the description of wave 
beams*
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ABSTRACT

Propagation properties of an optical vortex with a helical wavefront in cold uniform magnetized plasma are theoretically investigated in an
electron cyclotron range of frequencies. The effects of the helical wavefront of the optical vortex on the wave fields in magnetized plasma are
described. These effects become significant as the topological charge of the optical vortex increases or the distance from the phase singularity
point becomes small. The different properties of propagation are also confirmed in propagation of Laguerre–Gaussian beams by three-
dimensional simulations with the finite element method.
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I. INTRODUCTION
Radiofrequency (RF) waves are widely employed for heating,

current drive, and diagnostics in magnetic fusion plasma.
Knowledge of the propagation properties of RF waves in magne-
tized plasma is fundamental to designs of RF systems such as
launching antennas. The propagation properties of RF waves con-
ventionally originate from a plane wave. In other words, the
phase of the wave fields is assumed to be k ! r " xt,1 where k, r, x,
and t denote a wave vector, a position vector, an angular fre-
quency, and time. This expression is a simple way, adopted in
many textbooks, to introduce this topic, although advanced meth-
ods for the description of wave beams in dispersive media have
progressed.2

Recently, it is theoretically demonstrated that a single free
electron in circular or spiral motion emits twisted photons carry-
ing orbital angular momentum (OAM) along the axis of the elec-
tron circulation, in addition to spin angular momentum.3 It is
found that the radiated wave field has a phase term represented by
luþ kzz " xt, where l is the topological charge and u is the azi-
muthal angle around the propagation axis z. The wave with a heli-
cal wavefront is commonly called an optical vortex. An optical
vortex was originally discussed regarding a special mode of electro-
magnetic waves called the Laguerre–Gaussian (LG) mode4 and was
conventionally considered to be produced artificially with optical
elements.5 However, the twisted photons are naturally emitted by

cyclotron motion of electrons and are more ubiquitous in laborato-
ries and in nature than ever thought.6–8

Naturally, questions arise as to how an optical vortex propa-
gates in magnetized plasma and whether the unique property of
the helical wavefront is beneficial to heating, current drive, or diag-
nostics in magnetic fusion plasma.9–11 In this paper, propagation
properties of an optical vortex are discussed theoretically and
numerically for an electron cyclotron (EC) range of frequencies in
cold uniform magnetized plasma. Section II theoretically describes
propagation properties of EC waves with helical wavefronts in cold
uniform magnetized plasma. Results on three-dimensional (3D)
simulations for propagation of LG beams are presented and dis-
cussed in Sec. III. Section IV summarizes this paper with a future
outlook.

II. PROPAGATION PROPERTIES OF AN EC WAVE WITH
A HELICAL WAVEFRONT IN COLD UNIFORM
MAGNETIZED PLASMA
A. Wave with a helical wavefront

The Maxwell equations in magnetized plasma are given by

r$ E ¼ " @B
@t
;

r$ B ¼ l0 jþ e0
@E
@t

! "
:

(1)
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Cyclotron motion of electrons emits twisted photons (high-harmonic optical vortices)
4

M. Katoh et al., Sci. Rep. 7, 6130 (2017)

UVSOR Synchrotron Facility 
at Institute for Molecular Science, Japan

Higher-harmonic synchrotron 
radiation from undulators in a UV 
range has helical wavefront.

New iVORTECE device is under 

development at NIFS.

Numerical simulation shows 
coherent cyclotron emission from 
electrons has helical wavefront. 

www.nature.com/scientificreports/
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by the distribution of electrons26, 28. We also noted that a vortex X-ray beam was successfully produced by using 
spiral phase plate and undulator beam, which may be an alternative approach for practical applications29.

We have shown that the harmonic components of an electromagnetic !eld radiated by electrons in circular 
motion naturally have a helical phase structure, which suggests the presence of orbital angular momentum. We 
demonstrated this experimentally by observing helical undulator radiation. "e generation of a twisted photon 
beam from a helically micro-bunched electron beam was reported27. However, a vortex radiation !eld was formed 
by the constructive interference of the non-twisted radiation from the electrons that were helically aligned in 
space. "is is analogous to the generation of monochromatic radiation from a micro-bunched beam travelling in 
a uniform magnetic !eld, even though each electron produces broadband synchrotron radiation28.

"is work allows us to predict the conditions under which twisted radiation will be produced. We propose 
that cyclotron/synchrotron radiation, particularly from an electron cyclotron maser30, should be re-examined 
as twisted radiation. Another candidate is the non-linear inverse Compton scattering of circular-polarised light. 
In this case, the intense incoming light !eld causes relativistic circular motion of electrons, thereby producing 
twisted harmonic radiation, as described in a separated paper31. "ese radiation processes may play important, 
unexplored roles in the solar magnetosphere10 or planetary magnetosphere32, around magnetised neutron stars33, 
around active galactic nuclei34, in tokamaks used for nuclear fusion35, or in particle accelerators17. Observations 
using phase information may provide new approaches to the analysis of such systems. Several methods have been 
proposed for detecting vortex photons in nature, but there has been no explicit discussion of the sources of such 
radiation5, 6, 36. Our work suggest some possible vortex photon sources in nature.

"is work also suggests possible technologies for producing twisted photon beams in laboratories at wave-
lengths ranging from radio waves to gamma rays. In the ultraviolet and X-ray ranges, helical undulators can 
provide high-brightness twisted radiation. In the microwave and terahertz ranges, gyrotrons, where high-energy 
electrons execute circular motion and produce cyclotron radiation with harmonics, are potentially power-
ful sources of twisted radiation37. Another candidate is the non-linear inverse Compton scattering of intense 
circular-polarised laser radiation by a relativistic electron beam provided by an accelerator, which could poten-
tially provide a twisted X-ray or gamma-ray source31. "e development of these light sources will expand the 
application of twisted radiation to the entire electromagnetic wavelength range where alternative methods38–40 
are not applicable.

Methods
"is experiment was conducted at the BL1U beamline of the UVSOR-III electron storage ring, which is equipped 
with two polarisation-variable undulators in tandem. "e undulators had 10 magnetic periods with an 88-mm 
period length. Two undulators are separated by a space of approximately 0.5 m. "e undulators were operated in 
circular-polarised mode during the experiments. In the undulators, the electron beam executes spiral motion. We 
de!ne the handedness of electron circulation and light polarisation along the beam direction, such that clock-
wise circulation around the beam axis is right-handed. "e electrons produce quasi-monochromatic synchrotron 
radiation and harmonics in the ultraviolet wavelength range. "is major advantage of our experiment allowed 
us to perform all of the experiments in the air using ordinary optical components and devices. "e UVSOR-III 
electron storage ring was operated at 500 MeV for the experiment including up to 2nd harmonic and 400 MeV 
for those including up to 3rd harmonic, which are lower than the nominal electron energy of 750 MeV. "e elec-
tron beam emittance at this energy was estimated to be 8 nm-rad and 5nm-rad, respectively. "e electron beam 

Figure 6. Experimental setup of the interference experiment (upper) and the double-slit di#raction experiment 
(lower). Electrons travel from le$ to right while executing spiral motion.

www.nature.com/scientificreports/
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is well represented by the paraxial approximation. Such radiation !elds can be produced in the laboratory using 
a helical undulator. "ese devices are widely used as synchrotron light sources17, wherein a high-energy electron 
beam executes spiral motion in a specially designed magnetic !eld, radiating circularly polarised light. "is has 
been identi!ed as a vortex photon source both mathematically18 and experimentally19, although the origin of the 
twisting has not been addressed. We acknowledge that these pioneering works inspired us to carry out this work. 
"e helical undulator radiation corresponds to the case where an electron in circular motion travels towards 
the z-axis at relativistic velocity. Because the phase is Lorentz invariant, the harmonic components of the helical 
undulator radiation should preserve the helical phase structure, which is consistent with the conservation of 
angular momentum along the direction of motion of the frame in the Lorentz transformation12.

Here, we present experimental results that provide clear evidence of the twisted nature of the harmonics and 
the non-vortex nature of the fundamental as expressed by Eq. (5). To observe the spatial phase structure, a sig-
ni!cant fraction of the radiation !eld should be observed simultaneously. "e collimated nature of the undulator 
radiation provides an ideal experimental condition. We have carried out a series of experiments on the optical 
vortex beam from an undulator at the UVSOR-III electron storage ring20, 21. Some relevant results are shown 
below.

First, we discuss the interference between the fundamental radiation and harmonics. "e interference meas-
urement between a reference beam and a vortex beam is an established method to show its phase structure22. 
Bahrdt et al. proposed a novel technique to apply this method for undulator radiation and successfully demon-
strated it for the fundamental and second harmonics19. Following their approach, we carried out interference 
experiment including the higher harmonics. Figure 4 shows the interference patterns between the fundamental 
radiation from one undulator and the second or third harmonics from another undulator. "ey are compared 
with analytic calculations based on the formulae in the references19, 23 and a simulation code SRW24. Single- and 
double-spiral structures are clearly observed and they are well reproduced by the analytic calculations and the 
numerical simulations. "is result clearly shows that the orbital angular momentum increases as the harmonic 
number increases, which is one of the important prediction of Eq. (5). Moreover, the directions of the spiral struc-
tures are reversed with the reversal of the electron circulation direction. "ese results indicate that the relative 
phase di$erence between the light beams is in agreement with the theoretical prediction of Eq. (5). However, at 
this stage, the absolute phase structure of radiation generated by a single undulator is unclear.

Next, we present the results from a double-slit di$raction experiment. "is is the !rst experimental result to 
demonstrate the vortex nature of radiation from a single undulator using longitudinally incoherent but spatially 
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Figure 4. Interference between two undulator radiations. From the le% column to the right: interference 
patterns between the fundamental and third harmonics and between the fundamental and second harmonics 
for le%-handed polarisation, and between the fundamental and second harmonics and between the 
fundamental and third harmonics for right-handed polarisation. From the top row to the bottom, the raw CCD 
images, those with the analytic calculation results (red dotted lines) following Bahrdt et al.19 and the numerical 
simulation results by SRW25. "e handedness is de!ned along the electron beam direction. "e centres of the 
analytic results are !tted to the measurements.
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Cyclotron motion of electrons emits twisted photons
5
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where Jl and ′Jl  are a Bessel function of the !rst kind and its derivative, respectively. Here, we have introduced 
rotation vectors related to the unit vectors in the x and y directions as → = → ± →

± ( )e e i e / 2x y . "e !rst term in the 
parentheses represents circular polarised components with the same helicity as that of the electron motion, and 
the second term represents components with the reverse helicity. "e third term arises from the spherical nature 
of the !eld. "e summation of these three terms represents the elliptical polarisation. "e electric !elds of the 
fundamental, second and third harmonics calculated from Eq. (5) are shown in Fig. 3. "e vortex nature is clearly 
observed in the electric !eld distribution of the second and third harmonics but not in the electric !eld distribu-
tion of the fundamental component.

In Eq. (5), when θ is small, the !rst term becomes dominant and the !eld is accurately represented by paraxial 
approximation. Its polarisation is circular and has a phase term φ−i lexp{ ( 1) } that is a common feature of a vor-
tex beam. According to Allen et al.1, such a !eld possesses an orbital angular momentum of l−1. In the general 
case of θ, the !eld represented by Eq. (5) is non-paraxial. It has been argued that the radiation !eld of such a case 
possesses angular momentum, even though the spin and orbital angular momentum are di$cult to separate15. 
Recently we have successfully derived an expression for the ratio of the angular momentum density to the energy 
density for the radiation emitted by an electron in circular motion in a separate paper, taking a di%erent mathe-
matical approach16. "e expression shows that a photon of the l-th harmonic carries the total angular momentum 
whose z-component is equal to l. It may be interpreted as that the !rst component in Eq. (5) has spin angular 
momentum of +1 and orbital angular momentum of l−1, whereas the spin and orbital angular momenta of the 
second component are −1 and l + 1, respectively. "e total angular momentum in the z direction is always l.

When an electron in circular motion dri&s along the z-axis with high relativistic velocity, the radiation !eld 
perpendicular to the z-axis is strengthened by the Lorentz factor γ, which is given by the electron energy divided 
by the electron rest mass energy, and is collimated into a narrow cone around the z-axis12. Consequently, the !eld 

Figure 2. Le&: Waveform of the electric !eld propagating towards the polar angle (θ) of 30° and the azimuthal 
angle (φ) of 0° for a range of electron velocities, β. Blue lines represent the θ components, and red lines represent 
the φ components (see Fig. 1). Black dotted lines show the !eld intensities, given as the square summation of 
the electric !eld components. To emphasise the change in the waveform, the electric !elds are divided by β in 
the calculation (see Eq. (4)). Right: Radiation !eld intensity propagating towards 30° from the z-axis and its 
projection on the x-y plane. "e electron velocity β is 0.5. "e brightness is the magnitude.

Figure 3. Electric !eld distribution in the upper hemisphere viewed from the z-direction (see Fig. 1), from 
le& to right, for the fundamental (l = 1), second (l = 2) and third (l = 3) harmonics calculated from Eq. (5). 
"e colour represents the !eld intensity. "e fundamental frequency has an intensity maximum in the centre, 
whereas the harmonics show zero intensity at the centre. Arrows represent the direction of the electric !eld at a 
speci!c time.

Theory shows that a single free electron in circular motion 
emits twisted photons carrying orbital angular momentum 
(OAM) in addition to spin angular momentum.*
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I. INTRODUCTION
Radiofrequency (RF) waves are widely employed for heating,

current drive, and diagnostics in magnetic fusion plasma.
Knowledge of the propagation properties of RF waves in magne-
tized plasma is fundamental to designs of RF systems such as
launching antennas. The propagation properties of RF waves con-
ventionally originate from a plane wave. In other words, the
phase of the wave fields is assumed to be k ! r " xt,1 where k, r, x,
and t denote a wave vector, a position vector, an angular fre-
quency, and time. This expression is a simple way, adopted in
many textbooks, to introduce this topic, although advanced meth-
ods for the description of wave beams in dispersive media have
progressed.2

Recently, it is theoretically demonstrated that a single free
electron in circular or spiral motion emits twisted photons carry-
ing orbital angular momentum (OAM) along the axis of the elec-
tron circulation, in addition to spin angular momentum.3 It is
found that the radiated wave field has a phase term represented by
luþ kzz " xt, where l is the topological charge and u is the azi-
muthal angle around the propagation axis z. The wave with a heli-
cal wavefront is commonly called an optical vortex. An optical
vortex was originally discussed regarding a special mode of electro-
magnetic waves called the Laguerre–Gaussian (LG) mode4 and was
conventionally considered to be produced artificially with optical
elements.5 However, the twisted photons are naturally emitted by

cyclotron motion of electrons and are more ubiquitous in laborato-
ries and in nature than ever thought.6–8

Naturally, questions arise as to how an optical vortex propa-
gates in magnetized plasma and whether the unique property of
the helical wavefront is beneficial to heating, current drive, or diag-
nostics in magnetic fusion plasma.9–11 In this paper, propagation
properties of an optical vortex are discussed theoretically and
numerically for an electron cyclotron (EC) range of frequencies in
cold uniform magnetized plasma. Section II theoretically describes
propagation properties of EC waves with helical wavefronts in cold
uniform magnetized plasma. Results on three-dimensional (3D)
simulations for propagation of LG beams are presented and dis-
cussed in Sec. III. Section IV summarizes this paper with a future
outlook.

II. PROPAGATION PROPERTIES OF AN EC WAVE WITH
A HELICAL WAVEFRONT IN COLD UNIFORM
MAGNETIZED PLASMA
A. Wave with a helical wavefront

The Maxwell equations in magnetized plasma are given by

r$ E ¼ " @B
@t
;

r$ B ¼ l0 jþ e0
@E
@t

! "
:

(1)
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azimuthal angle around the optical axis z

*M. Katoh et al., Phy. Rev. Lett. 118, 094801 (2017); Sci. Rep. 7, 6130 (2017)

How an optical vortex propagates in magnetized plasma? 
Beneficial for heating or diagnostics in fusion plasma?

Radiation field intensity  
from an electron
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Maxwell equations in magnetized plasma
7

Assuming a monochromatic wave in time:
Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform

rEr -
1
2

$
i $i jlj

r
rr þ lruþ kzrz

% &
~Ers

$i i
jlj
r
rr þ lruþ k*zrz

% &
~E
*
rs
*
'

¼ 1
2

$
i $i jlj

r
er þ

l
r
eu þ kzez

% &
~Ers

$i i
jlj
r
er þ

l
r
eu þ k*zez

% &
~E
*
rs
*
'

¼ 1
2

i

$i jlj
reisgnðlÞu

ex

þ l
reisgnðlÞu

ey

þkzez

0

BBBBBB@

1

CCCCCCA

~Ers$ i

i
jlj

re$isgnðlÞu
ex

þ l
re$isgnðlÞu

ey

þk*zez

0

BBBBBB@

1

CCCCCCA

~E
*
rs
*

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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I. INTRODUCTION
Radiofrequency (RF) waves are widely employed for heating,

current drive, and diagnostics in magnetic fusion plasma.
Knowledge of the propagation properties of RF waves in magne-
tized plasma is fundamental to designs of RF systems such as
launching antennas. The propagation properties of RF waves con-
ventionally originate from a plane wave. In other words, the
phase of the wave fields is assumed to be k ! r " xt,1 where k, r, x,
and t denote a wave vector, a position vector, an angular fre-
quency, and time. This expression is a simple way, adopted in
many textbooks, to introduce this topic, although advanced meth-
ods for the description of wave beams in dispersive media have
progressed.2

Recently, it is theoretically demonstrated that a single free
electron in circular or spiral motion emits twisted photons carry-
ing orbital angular momentum (OAM) along the axis of the elec-
tron circulation, in addition to spin angular momentum.3 It is
found that the radiated wave field has a phase term represented by
luþ kzz " xt, where l is the topological charge and u is the azi-
muthal angle around the propagation axis z. The wave with a heli-
cal wavefront is commonly called an optical vortex. An optical
vortex was originally discussed regarding a special mode of electro-
magnetic waves called the Laguerre–Gaussian (LG) mode4 and was
conventionally considered to be produced artificially with optical
elements.5 However, the twisted photons are naturally emitted by

cyclotron motion of electrons and are more ubiquitous in laborato-
ries and in nature than ever thought.6–8

Naturally, questions arise as to how an optical vortex propa-
gates in magnetized plasma and whether the unique property of
the helical wavefront is beneficial to heating, current drive, or diag-
nostics in magnetic fusion plasma.9–11 In this paper, propagation
properties of an optical vortex are discussed theoretically and
numerically for an electron cyclotron (EC) range of frequencies in
cold uniform magnetized plasma. Section II theoretically describes
propagation properties of EC waves with helical wavefronts in cold
uniform magnetized plasma. Results on three-dimensional (3D)
simulations for propagation of LG beams are presented and dis-
cussed in Sec. III. Section IV summarizes this paper with a future
outlook.

II. PROPAGATION PROPERTIES OF AN EC WAVE WITH
A HELICAL WAVEFRONT IN COLD UNIFORM
MAGNETIZED PLASMA
A. Wave with a helical wavefront

The Maxwell equations in magnetized plasma are given by

r$ E ¼ " @B
@t
;

r$ B ¼ l0 jþ e0
@E
@t

! "
:

(1)
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Using the dielectric tensor:

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
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where

wðr;u; zÞ ¼
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kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
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can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
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corresponds to the angular frequency$x.
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
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where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
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erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
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can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that
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+ 1 (4)

and
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
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k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that
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the condition jkj , 2p=k0 leads to
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For the gradients of the complex wave vector, it can be written that

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 012502 (2021); doi: 10.1063/5.0015109 28, 012502-2

Published under license by AIP Publishing

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
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assumed to be given by
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where
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is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
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can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
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This formula suggests that the “wave vector” of the optical vortex with
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that
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For the gradients of the complex wave vector, it can be written that
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in magnetized plasma, Eq. (1) can be rewritten as
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is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
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can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
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corresponds to the angular frequency$x.
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz
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r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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z component of the local wave vector:

When     and kz are constant on space, this simple form of the optical vortex 
satisfies the Maxwell equations in the vacuum without any approximation.

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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The wavefield can have a parallel component to the propagation direction z even in the 
vacuum although a plane wave is a transverse wave without a parallel component.*
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Complex eikonal approximation
9

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
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rr þ lruþ kzðr;u; zÞrz
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
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and
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;
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k0:
(6)

For the gradients of the complex wave vector, it can be written that
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① Short wavelength condition

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
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n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
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! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
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and
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/ 4p2
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;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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② Weakly varying amplitude

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and
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/ 4p2
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;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o
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*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
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er þ
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reisgnðlÞu
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reisgnðlÞu
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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This formula suggests the “wave vector” of the optical vortex.

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and
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r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Simple approach to exclude the phase singularity in the ordering assumptions
10

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
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~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
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;
jr! ðr! ~EÞj

j~Ej
, 1
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2
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the condition jkj , 2p=k0 leads to
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For the gradients of the complex wave vector, it can be written that
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A natural approach would be look for a solution such that

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by
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where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
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+ 1 (4)

and
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;
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2
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þ jkzj2 /
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the condition jkj , 2p=k0 leads to
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and
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;
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For the gradients of the complex wave vector, it can be written that

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 012502 (2021); doi: 10.1063/5.0015109 28, 012502-2

Published under license by AIP Publishing

① ②
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
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where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
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n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that
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+ 1 (4)
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that
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the condition jkj , 2p=k0 leads to
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For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
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where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
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can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
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k0

and
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/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
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; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and
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, 1
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;
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, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /
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r20
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the condition jkj , 2p=k0 leads to
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and
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(6)

For the gradients of the complex wave vector, it can be written that
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by
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where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
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erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that
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L0
+ 1 (4)

and
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for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that
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For the gradients of the complex wave vector, it can be written that
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FIG. 1. Schematic diagram of propagation of an optical vortex with a helical wave-
front along with a twisted photon with OAM.

FIG. 2. Coordinate system. The static magnetic field B0 is chosen to be in the z
direction. The optical vortex propagates in the z0 direction, which lies in the x-z
plane.

FIG. 3. The z components of the refractive index for (a) and (b) the R wave and (c)
and (d) the L wave as a function of x2

pe=x
2.
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Limited propagation distance
11

This is an ad hoc assumption to reduce the problem to an algebraic equation  
rather than a partial differential equation on the phase function.
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Hence, dk can be neglected as compared to k only for a small propaga-
tion distance

jzj! L0:

It should be noted that this is an ad hoc assumption introduced here
in order to reduce the problem to an algebraic equation rather than a
partial differential equation.

Now the contributions to the wave equation can be computed
such that

r" E ¼ 1
2
rs" ~E þ sr" ~E þ c:c:½ &

and

r" ðr" EÞ ¼ 1
2

!
k ) k * ðk + kÞI
" #

~Es

þ Oðk20!Þ þ O k20
jzj
L0

$ %
þ c:c:

&
; (9)

where I denotes the identity tensor.
The wave vector given by Eq. (5) denotes the local propagation

direction at each position r exp ½isgnðlÞu&. The propagation direction
of the optical vortex “as a beam” is given by the averaged k on u from
0 to 2p, i.e.,

kz ¼ !k , 1
2p

ð2p

0
kdu ¼ 1

2p

ð2p

0
kzdu

 !

ez , !kzez:

If the field line of the wave vector k is traced in space, the helical struc-
ture appears. In the eikonal approximation, i.e., Er / exp ½iSðr;u; zÞ&,
where SðrÞ expresses the phase front structure expressed as

SðrÞ ¼ *ijlj log r þ luþ w;

rSðrÞ - k ¼ *i jlj
r
rr þ lruþ kzrz;

exp iSðrÞ½ & ¼ rjlj exp iðluþ wÞ½ &:

This approximation can be called “vortex optics” as a reference to
“geometrical optics” in plane waves. The description of vortex optics
can provide a good insight to the propagation properties, but the
description is limited under the ordering assumptions. The wave vec-
tor k of a plane wave should be in one direction in the Cartesian coor-
dinates. However, the direction of k of the wave with a helical
wavefront should be rotated. Ray-tracing can be applied to vortex
optics in the same way as geometrical optics. The picture of ray-
tracing in vortex optics will match that of a photon rotating around
the propagation axis, carrying OAM. Figure 1 shows a schematic

FIG. 4. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 5) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and (d) l¼ –1, respectively, at

r ¼ 5k0, and those for the conventional R and L waves of a plane wave for
comparison.

FIG. 5. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 1 and [(d)–(f)] the vortex R wave for l¼ –1 as a function of x2

pe=x
2 and u at

r ¼ 5k0.
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δk can be neglected as compared to k only for a small propagation distance.
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
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, 1
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;
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j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Hence, dk can be neglected as compared to k only for a small propaga-
tion distance
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It should be noted that this is an ad hoc assumption introduced here
in order to reduce the problem to an algebraic equation rather than a
partial differential equation.

Now the contributions to the wave equation can be computed
such that

r" E ¼ 1
2
rs" ~E þ sr" ~E þ c:c:½ &

and

r" ðr" EÞ ¼ 1
2

!
k ) k * ðk + kÞI
" #

~Es

þ Oðk20!Þ þ O k20
jzj
L0

$ %
þ c:c:

&
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where I denotes the identity tensor.
The wave vector given by Eq. (5) denotes the local propagation

direction at each position r exp ½isgnðlÞu&. The propagation direction
of the optical vortex “as a beam” is given by the averaged k on u from
0 to 2p, i.e.,

kz ¼ !k , 1
2p

ð2p

0
kdu ¼ 1

2p

ð2p

0
kzdu
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ez , !kzez:

If the field line of the wave vector k is traced in space, the helical struc-
ture appears. In the eikonal approximation, i.e., Er / exp ½iSðr;u; zÞ&,
where SðrÞ expresses the phase front structure expressed as

SðrÞ ¼ *ijlj log r þ luþ w;

rSðrÞ - k ¼ *i jlj
r
rr þ lruþ kzrz;

exp iSðrÞ½ & ¼ rjlj exp iðluþ wÞ½ &:

This approximation can be called “vortex optics” as a reference to
“geometrical optics” in plane waves. The description of vortex optics
can provide a good insight to the propagation properties, but the
description is limited under the ordering assumptions. The wave vec-
tor k of a plane wave should be in one direction in the Cartesian coor-
dinates. However, the direction of k of the wave with a helical
wavefront should be rotated. Ray-tracing can be applied to vortex
optics in the same way as geometrical optics. The picture of ray-
tracing in vortex optics will match that of a photon rotating around
the propagation axis, carrying OAM. Figure 1 shows a schematic

FIG. 4. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 5) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and (d) l¼ –1, respectively, at

r ¼ 5k0, and those for the conventional R and L waves of a plane wave for
comparison.

FIG. 5. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 1 and [(d)–(f)] the vortex R wave for l¼ –1 as a function of x2

pe=x
2 and u at

r ¼ 5k0.
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)
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j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
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This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as
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Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and
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r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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Hence, dk can be neglected as compared to k only for a small propaga-
tion distance

jzj! L0:

It should be noted that this is an ad hoc assumption introduced here
in order to reduce the problem to an algebraic equation rather than a
partial differential equation.

Now the contributions to the wave equation can be computed
such that

r" E ¼ 1
2
rs" ~E þ sr" ~E þ c:c:½ &

and

r" ðr" EÞ ¼ 1
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where I denotes the identity tensor.
The wave vector given by Eq. (5) denotes the local propagation

direction at each position r exp ½isgnðlÞu&. The propagation direction
of the optical vortex “as a beam” is given by the averaged k on u from
0 to 2p, i.e.,

kz ¼ !k , 1
2p

ð2p

0
kdu ¼ 1

2p

ð2p

0
kzdu

 !

ez , !kzez:

If the field line of the wave vector k is traced in space, the helical struc-
ture appears. In the eikonal approximation, i.e., Er / exp ½iSðr;u; zÞ&,
where SðrÞ expresses the phase front structure expressed as

SðrÞ ¼ *ijlj log r þ luþ w;

rSðrÞ - k ¼ *i jlj
r
rr þ lruþ kzrz;

exp iSðrÞ½ & ¼ rjlj exp iðluþ wÞ½ &:

This approximation can be called “vortex optics” as a reference to
“geometrical optics” in plane waves. The description of vortex optics
can provide a good insight to the propagation properties, but the
description is limited under the ordering assumptions. The wave vec-
tor k of a plane wave should be in one direction in the Cartesian coor-
dinates. However, the direction of k of the wave with a helical
wavefront should be rotated. Ray-tracing can be applied to vortex
optics in the same way as geometrical optics. The picture of ray-
tracing in vortex optics will match that of a photon rotating around
the propagation axis, carrying OAM. Figure 1 shows a schematic

FIG. 4. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 5) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and (d) l¼ –1, respectively, at

r ¼ 5k0, and those for the conventional R and L waves of a plane wave for
comparison.

FIG. 5. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 1 and [(d)–(f)] the vortex R wave for l¼ –1 as a function of x2

pe=x
2 and u at

r ¼ 5k0.
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Schematic of propagation of 
the optical vortex

Wavefront structure in the eikonal approximation
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Wave electric field redefined in the coordinate system: B0 = B0ez
14 4

x
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φ’
r’

FIG. 2. Coordinate system. The static magnetic field B0 is chosen to
be in the z direction. The optical vortex propagates in the z′ direction,
which lies in the x-z plane.

the wave vector is redefined in the coordinate system as

k = kr′ + kϕ′ + kz′ ,

kr′ = −i
|l|
r′

(cosϕ′ cos θ, sinϕ′, − cosϕ′ sin θ),

kϕ′ =
l
r′

(− sinϕ′ cos θ, cosϕ′, sinϕ′ sin θ),

kz′ = (kz′ sin θ, 0, kz′ cos θ),

k̄z′ =
1

2π

∫ 2π

0
kz′dϕ′.

The wave fields can also have a parallel component to the
propagation direction z′ even in the vacuum, although a plane
wave is a transverse wave without a parallel component to the
propagation direction.

Since the linear form of the equation of motion is the same
as that in the case of a plane wave,1,13 the cold plasma dielec-
tric tensor is given by

εr(ω) =




S (ω) −iD(ω) 0
iD(ω) S (ω) 0

0 0 P(ω)


 , ε

∗
r (−ω) = εr(ω), (11)

where the dielectric tensor elements S , D, and P are the same
notation of Stix.1,13

Then, using Eq. (9), the telegraphic equation Eq. (2) can be
written in the Cartesian coordinates as

1
2

[
Λ(ω, k) · Ẽs′ + Λ∗(−ω, k) · Ẽ∗s′∗

]
= 0, (12)

where

Λ(ω, k) ≡ k ⊗ k − (k · k)I + k2
0εr(ω),

s′ ≡ α(r′)|l| exp[i(lϕ′ + ψ′ − ωt)].

The tensor Λ is the standard cold-plasma tensor evaluated at
the complex wave vector k. The first two terms of the ten-
sor Λ are symmetric but Λ is not a Hermitian tensor. This
characteristic is caused by the complex k. Therefore, the heli-
cal wavefront structure is expected to produce different prop-
agation properties in comparison to a plane wave. It is also

important to notice that Eq. (12) does not simply account for
dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since Λ is not a Hermitian tensor, the eigen-
values are not always real numbers and the eigenvectors are
not always orthogonal to each other. The determinant of each
coefficient matrix of Eq. (12) should be zero in order to have
a non-trivial solution. By using n = (c/ω)k, where n is the
refractive index,

det [n⊗ n− (n · n)I + εr] = 0 (13)

expresses the solvability condition for Eq. (12). With the com-
plex wave vector k under the ordering assumptions, Eq. (13)
can be treated simply as an algebraic equation. When the wave
is a plane wave, i.e., l = 0, Eq. (13) is reduced to the disper-
sion relation with a plane wave.

The Poynting vector of a monochromatic electromagnetic
wave with complex n is written as

S =
1
µ0

E × B

≈ 1
4cµ0

{
|Ẽ|2(n+ n∗) − (Ẽ∗ · n)Ẽ − (Ẽ · n∗)Ẽ∗

}

× |α|2(r′)2|l|e−2 Imψ′ .

(14)

Here, E × B means that the second harmonic oscillating terms
are annihilated by the time average. In other words, S is eval-
uated in the average over a period in time. The derivation
is shown in Appendix B. Divergence of the Poynting vector
gives the source or the sink of the electromagnetic wave en-
ergy, which is written as

∇ · S ≈ −k2
0
|α|2(r′)2|l|e−2 Imψ′

2µ0ω
Ẽ∗ · εa

r · Ẽ = 0,

where the last equality holds for a loss-less medium (εa
r = 0).

The derivation is also shown in Appendix B. This equation
shows that the electromagnetic wave energy is conserved
when εr is Hermitian. This energy conservation is satisfied
even if n is complex due to the helical wavefront structure.

C. Parallel propagation

Two special cases are discussed in more detail in the fol-
lowing: (i) parallel propagation and (ii) perpendicular propa-
gation. Firstly, in the case of parallel propagation, i.e., θ = 0,
the solvability condition Eq. (13) becomes

det




S − n2
z − n2

l −iD − i sgn(l)n2
l −inlnz

iD − i sgn(l)n2
l S − n2

z + n2
l sgn(l)nlnz

−inlnz sgn(l)nlnz P


 = 0,

where

nl ≡
c
ω

|l|
r′ei sgn(l)ϕ′ , r′ = r =
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Uniform and homogeneous plasma in both space and time

diagram of propagation of the optical vortex. The depicted equiphase
plane shows a helical wavefront along with a twisted photon with
OAM, in contrast to a flat wavefront of a plane wave without OAM. If
the electric field E does not include the amplitude factor rjlj, the radial
derivative of E is zero under the ordering assumptions. This is not real
in the description of optical vortices around the phase singularity.
Therefore, the local wave vector k in the eikonal approximation should
contain the term in the r direction even if it is imaginary. If the ampli-
tude ~E is assumed to be slowly varying and the paraxial approximation
is applied, the LG beam will be obtained from Eq. (2).

B. Telegraphic equation in cold plasma
The wave field written in Eq. (3) is appropriate to study prop-

agation properties of optical vortices in cold uniform magnetized
plasma. Since the plasma has been presumed to be simply uniform
and homogeneous in both space and time, the wave electric field
is assumed in the Cartesian coordinates system (x, y, z) to be
written as

E ¼ 1
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~Eaðr0Þjlj exp iðlu0 þ w0 % xtÞ
! "

þ c:c:
n o

; (10)

where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ ðy0Þ2

q
; u0 ¼ tan%1

y0

x0
;

w0 ¼
ðz0

0
kz0ðr0;u0; z00Þdz00;

x0

y0

z0

0

BB@

1

CCA ¼
cos h 0 %sin h

0 1 0

sin h 0 cos h

0

BB@

1

CCA

x

y

z

0

BB@

1

CCA:

The coordinate system is defined as shown in Fig. 2. The static
magnetic field B0 is directed in the z direction. The optical vortex
propagates in the z0 direction, which lies in the x-z plane. The propa-
gation angle h is the angle between B0 and the averaged wave vector

FIG. 6. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and

(d) l¼ –1, respectively, at r ¼ 5k0, and those for the conventional R and L waves
of a plane wave for comparison. The Poynting vector is normalized by the averaged
jSj value along u from 0 to 2p.

FIG. 7. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 8) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and (d) l¼ –20, respectively, at

r ¼ 20k0, and those for the conventional R and L waves of a plane wave for
comparison.
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FIG. 7. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 8) as a function of
x2
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2 in the cases of (a) and (b) l¼ 20 and (c) and (d) l¼ –20, respectively, at
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comparison.
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static magnetic field
propagation direction

!k ¼ !kz0ez0 , where the wave vector is redefined in the coordinate system
as

k ¼ kr0 þ ku0 þ kz0 ;

kr0 ¼ #i
jlj
r0
ðcosu0 cos h; sinu0;#cosu0 sin hÞ;

ku0 ¼
l
r0
ð#sinu0 cos h; cosu0; sinu0 sin hÞ;
kz0 ¼ ðkz0 sin h; 0; kz0 cos hÞ;

!kz0 ¼
1
2p

ð2p

0
kz0du0:

The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by

erðxÞ ¼
SðxÞ #iDðxÞ 0

iDðxÞ SðxÞ 0

0 0 PðxÞ

0

BB@

1

CCA; e&r ð#xÞ ¼ erðxÞ; (11)

where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as

1
2

Kðx; kÞ ' ~Es0 þ K&ð#x; kÞ ' ~E&ðs0Þ&
" #

¼ 0; (12)

where

Kðx; kÞ ( k ) k # ðk ' kÞI þ k20erðxÞ;
s0 ( aðr0Þjlj exp iðlu0 þ w0 # xtÞ

" #
:

The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by
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where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as
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¼ 0; (12)

where
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The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by
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plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2
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FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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as
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The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by

erðxÞ ¼
SðxÞ #iDðxÞ 0

iDðxÞ SðxÞ 0

0 0 PðxÞ

0
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CCA; e&r ð#xÞ ¼ erðxÞ; (11)

where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as
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Kðx; kÞ ' ~Es0 þ K&ð#x; kÞ ' ~E&ðs0Þ&
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¼ 0; (12)

where
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The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2
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2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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cold-plasma tensor evaluated at the complex wave vector k
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The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
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given by
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The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2
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2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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not Hermitian
→ different propagation properties in comparison to a plane wave

not simply account for dispersion, but include diffraction
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APPENDIX A: DIFFRACTION EFFECT IN EQ. (12)
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Electromagnetic wave energy is conserved when propagating away from EC resonances
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loss-less medium

det n! n" ðn $ nÞI þ er½ ( ¼ 0 (13)

expresses the solvability condition for Eq. (12). With the complex
wave vector k under the ordering assumptions, Eq. (13) can be treated
simply as an algebraic equation. When the wave is a plane wave, i.e.,
l¼ 0, Eq. (13) is reduced to the dispersion relation with a plane wave.

The Poynting vector of a monochromatic electromagnetic wave
with complex n is written as
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j~Ej2ðnþ n,Þ " ð~E, $ nÞ~E " ð~E $ n,Þ~E,
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Here, E * B means that the second harmonic oscillating terms are
annihilated by the time average. In other words, S is evaluated in the
average over a period in time. The derivation is shown in Appendix B.
Divergence of the Poynting vector gives the source or the sink of the
electromagnetic wave energy, which is written as

r $ S + "k20
jaj2ðr0Þ2jlje"2Imw0

2l0x
~E
, $ ear $ ~E ¼ 0;

FIG. 10. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode averaged along u0 (see Fig. 11) as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O

and X modes of a plane wave for comparison.

FIG. 11. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 1 at r 0 ¼ 5k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.

FIG. 12. The z0 components of the refractive index for (a) and (b) the conventional
O mode and (c) and (d) the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 . The refractive index larger/smaller than 2/–2 is colored the same

as 2/–2.
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The Poynting vector of a monochromatic wave with complex n

!k ¼ !kz0ez0 , where the wave vector is redefined in the coordinate system
as

k ¼ kr0 þ ku0 þ kz0 ;

kr0 ¼ #i
jlj
r0
ðcosu0 cos h; sinu0;#cosu0 sin hÞ;

ku0 ¼
l
r0
ð#sinu0 cos h; cosu0; sinu0 sin hÞ;
kz0 ¼ ðkz0 sin h; 0; kz0 cos hÞ;

!kz0 ¼
1
2p

ð2p

0
kz0du0:

The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by

erðxÞ ¼
SðxÞ #iDðxÞ 0

iDðxÞ SðxÞ 0

0 0 PðxÞ

0

BB@

1

CCA; e&r ð#xÞ ¼ erðxÞ; (11)

where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as

1
2

Kðx; kÞ ' ~Es0 þ K&ð#x; kÞ ' ~E&ðs0Þ&
" #

¼ 0; (12)

where

Kðx; kÞ ( k ) k # ðk ' kÞI þ k20erðxÞ;
s0 ( aðr0Þjlj exp iðlu0 þ w0 # xtÞ

" #
:

The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 012502 (2021); doi: 10.1063/5.0015109 28, 012502-6

Published under license by AIP Publishing

the second harmonic oscillating terms are annihilated by the time average

Divergence of the Poynting vector gives the source or the sink of the wave energy.

det n! n" ðn $ nÞI þ er½ ( ¼ 0 (13)

expresses the solvability condition for Eq. (12). With the complex
wave vector k under the ordering assumptions, Eq. (13) can be treated
simply as an algebraic equation. When the wave is a plane wave, i.e.,
l¼ 0, Eq. (13) is reduced to the dispersion relation with a plane wave.

The Poynting vector of a monochromatic electromagnetic wave
with complex n is written as

S ¼ 1
l0

E * B

+ 1
4cl0

j~Ej2ðnþ n,Þ " ð~E, $ nÞ~E " ð~E $ n,Þ~E,
! "

* jaj2ðr0Þ2jlje"2Imw0 : (14)

Here, E * B means that the second harmonic oscillating terms are
annihilated by the time average. In other words, S is evaluated in the
average over a period in time. The derivation is shown in Appendix B.
Divergence of the Poynting vector gives the source or the sink of the
electromagnetic wave energy, which is written as

r $ S + "k20
jaj2ðr0Þ2jlje"2Imw0

2l0x
~E
, $ ear $ ~E ¼ 0;

FIG. 10. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode averaged along u0 (see Fig. 11) as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O

and X modes of a plane wave for comparison.

FIG. 11. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 1 at r 0 ¼ 5k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.

FIG. 12. The z0 components of the refractive index for (a) and (b) the conventional
O mode and (c) and (d) the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 . The refractive index larger/smaller than 2/–2 is colored the same

as 2/–2.
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where the last equality holds for a loss-less medium (ear ¼ 0). The deri-
vation is also shown in Appendix B. This equation shows that the elec-
tromagnetic wave energy is conserved when er is Hermitian. This
energy conservation is satisfied even if n is complex due to the helical
wavefront structure.

C. Parallel propagation
Two special cases are discussed in more detail in the following:

(i) parallel propagation and (ii) perpendicular propagation. First, in
the case of parallel propagation, i.e., h¼ 0, the solvability condition Eq.
(13) becomes

det
S" n2z " n2l "iD" isgnðlÞn2l "inlnz

iD" isgnðlÞn2l S" n2z þ n2l sgnðlÞnlnz
"inlnz sgnðlÞnlnz P

0

@

1

A ¼ 0;

where

FIG. 13. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 14) as a function of x2

pe=x
2 in

the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O and X modes of a
plane wave for comparison.

FIG. 14. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of l¼ 1

at r 0 ¼ 5k0.

FIG. 15. Electric field strength of each component for [(a)–(c)] the conventional O
mode and [(d)–(f)] the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 .
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The wave energy is conserved when εr is Hermitian. 
This energy conservation is satisfied even if n is complex due to the helical wavefront structure.

T. I. Tsujimura & S. Kubo, Phys. Plasmas 28, 012502 (2021)
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Parallel propagation: θ = 0 & kz // B0
18

Solvability condition
5
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FIG. 3. The z components of the refractive index for (a)(b) the R
wave and (c)(d) the L wave.

which are the eigenmodes for the so-called right-handed or
the so-called left-handed circularly polarized waves (R or L
waves) in the magnetized plasma. Figure 3 shows an example
of the z components of the refractive index for the R wave and
the L wave as a function of ω2

pe/ω
2 ∝ ne, where ωpe and ne de-

note the angular plasma frequency for electrons and the elec-
tron density. In these calculations, the static magnetic field
strength B0 is set 2 T for f = 77 GHz,14 thus ωce/ω = 0.73,
where ωce denotes the angular EC frequency. The z compo-
nents of the refractive index is the same as in the case of a
plane wave.

However, resultant electric field polarizations are different
as follows. In the case of the “vortex” R wave, n2

z ≡ n2
R = R,

the electric field components are

ẼR = [1, i, 0]Ẽx (l ≥ 0),

ẼR =


1, i

PD + n2
l (P − n2

R)
PD − n2

l (P − n2
R)
,

2i
nlnRD

PD − n2
l (P − n2

R)


 Ẽx (l < 0),

while in the case of the “vortex” L wave, n2
z ≡ n2

L = L, the
electric field components are

ẼL =


1, −i

PD − n2
l (P − n2

L)
PD + n2

l (P − n2
L)
,

2i
nlnLD

PD + n2
l (P − n2

L)


 Ẽx (l ≥ 0),

ẼL = [1, −i, 0]Ẽx (l < 0).

Here, Ẽx is the amplitude but it is not determined only from
Eq. (12). The amplitude can be determined with a boundary

condition such as a launching antenna where the electric field
is excited. Both waves satisfy

∇ · D ≈ 1
2

[
ik ·

{
ε0εr(ω) · Ẽs

}
− ik∗ ·

{
ε0ε
∗
r (−ω) · Ẽ∗s∗

}]

= 0,

although ẼR · Ẽ∗L ! 0. For the right-handed optical vortex with
l > 0, the vortex R wave is the pure R wave, but the vortex L
wave has a parallel component and is not a left-handed circu-
lar polarization, which is different from the pure L wave. For
the left-handed optical vortex with l < 0, the vortex L wave is
the pure L wave, but the vortex R wave has a parallel compo-
nent and is not a right-handed circular polarization, which is
different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

The property of energy flux conservation in cold uniform
magnetized loss-free plasma can be found in plots of S in
Eq. (14). Figure 4 shows electric field strength of each com-
ponent for the vortex R waves and the vortex L waves aver-
aged on ϕ as a function of ω2

pe/ω
2 in the cases of l = 1 and

l = −1, respectively, at r = 5λ0. Each electric field com-
ponent of a plane wave is also shown for comparison. The
dependence of each electric field component on ϕ is shown in
Fig. 5. The Poynting vectors as a function of ω2

pe/ω
2 in these

cases are shown in Fig. 6. Here, the scale length L0 is cho-
sen to be L0 = 100λ0, which satisfies the validity conditions
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(c) R wave
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(d) L wave

ωpe
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FIG. 4. Electric field strength of each component for (a)(c) the vortex
R waves and (b)(d) the vortex L waves averaged along ϕ (see Fig. 5)
as a function of ω2

pe/ω
2 in the cases of (a)(b) l = 1 and (c)(d) l = −1,

respectively, at r = 5λ0, and those for the conventional R and L waves
of a plane wave for comparison.

det n! n" ðn $ nÞI þ er½ ( ¼ 0 (13)

expresses the solvability condition for Eq. (12). With the complex
wave vector k under the ordering assumptions, Eq. (13) can be treated
simply as an algebraic equation. When the wave is a plane wave, i.e.,
l¼ 0, Eq. (13) is reduced to the dispersion relation with a plane wave.

The Poynting vector of a monochromatic electromagnetic wave
with complex n is written as

S ¼ 1
l0

E * B

+ 1
4cl0

j~Ej2ðnþ n,Þ " ð~E, $ nÞ~E " ð~E $ n,Þ~E,
! "

* jaj2ðr0Þ2jlje"2Imw0 : (14)

Here, E * B means that the second harmonic oscillating terms are
annihilated by the time average. In other words, S is evaluated in the
average over a period in time. The derivation is shown in Appendix B.
Divergence of the Poynting vector gives the source or the sink of the
electromagnetic wave energy, which is written as

r $ S + "k20
jaj2ðr0Þ2jlje"2Imw0

2l0x
~E
, $ ear $ ~E ¼ 0;

FIG. 10. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode averaged along u0 (see Fig. 11) as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O

and X modes of a plane wave for comparison.

FIG. 11. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 1 at r 0 ¼ 5k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.

FIG. 12. The z0 components of the refractive index for (a) and (b) the conventional
O mode and (c) and (d) the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 . The refractive index larger/smaller than 2/–2 is colored the same

as 2/–2.
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where the last equality holds for a loss-less medium (ear ¼ 0). The deri-
vation is also shown in Appendix B. This equation shows that the elec-
tromagnetic wave energy is conserved when er is Hermitian. This
energy conservation is satisfied even if n is complex due to the helical
wavefront structure.

C. Parallel propagation
Two special cases are discussed in more detail in the following:

(i) parallel propagation and (ii) perpendicular propagation. First, in
the case of parallel propagation, i.e., h¼ 0, the solvability condition Eq.
(13) becomes

det
S" n2z " n2l "iD" isgnðlÞn2l "inlnz

iD" isgnðlÞn2l S" n2z þ n2l sgnðlÞnlnz
"inlnz sgnðlÞnlnz P

0

@

1

A ¼ 0;

where

FIG. 13. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 14) as a function of x2

pe=x
2 in

the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O and X modes of a
plane wave for comparison.

FIG. 14. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of l¼ 1

at r 0 ¼ 5k0.

FIG. 15. Electric field strength of each component for [(a)–(c)] the conventional O
mode and [(d)–(f)] the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 .

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 012502 (2021); doi: 10.1063/5.0015109 28, 012502-8

Published under license by AIP Publishing

nl !
c
x

jlj
r0eisgnðlÞu0

; r0 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; u0 ¼ u ¼ tan&1

y
x
:

The refractive index nz0 ¼ nz can be obtained as

ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
PDþ n2l ðP & n2RÞ
PD& n2l ðP & n2RÞ

; 2i
nlnRD

PD& n2l ðP & n2RÞ

" #
~Ex ðl < 0Þ

while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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Refractive index

nl !
c
x

jlj
r0eisgnðlÞu0

; r0 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; u0 ¼ u ¼ tan&1

y
x
:

The refractive index nz0 ¼ nz can be obtained as

ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
PDþ n2l ðP & n2RÞ
PD& n2l ðP & n2RÞ

; 2i
nlnRD

PD& n2l ðP & n2RÞ

" #
~Ex ðl < 0Þ

while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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nl !
c
x

jlj
r0eisgnðlÞu0

; r0 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; u0 ¼ u ¼ tan&1

y
x
:

The refractive index nz0 ¼ nz can be obtained as

ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
PDþ n2l ðP & n2RÞ
PD& n2l ðP & n2RÞ

; 2i
nlnRD

PD& n2l ðP & n2RÞ

" #
~Ex ðl < 0Þ

while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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right-handed (R) circularly polarized wave 
left-handed (L) circularly polarized wave

Same as a plane wave
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Electric field polarizations are different and expressed in 3D
19

“vortex” R mode
nl !

c
x

jlj
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; u0 ¼ u ¼ tan&1

y
x
:

The refractive index nz0 ¼ nz can be obtained as

ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
PDþ n2l ðP & n2RÞ
PD& n2l ðP & n2RÞ

; 2i
nlnRD

PD& n2l ðP & n2RÞ

" #
~Ex ðl < 0Þ

while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are
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while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are
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; 2i
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Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
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while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ
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~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;
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while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
PD& n2l ðP & n2LÞ
PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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Perpendicular propagation: θ = π/2 & kx ⊥ B0
21

• The terms on nl are additions in a plane wave. 
- “vortex” O (ordinary) mode 
- “vortex” X (extraordinary) mode 
- noticeable when l/r’ is large 

• Modulated with the azimuthal angle φ’ 
‣ started with kz a function of r and φ

Relations of electric field components to 
calculate the polarization

10

FIG. 17. The z′ components of the refractive index for (a)(b) the
vortex O mode and (c)(d) the vortex X mode as a function of ω2

pe/ω
2

and ϕ′ in the case of l = 20 at r′ = 20λ0. The refractive index
larger/smaller than 2/−2 is colored the same as 2/−2.
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FIG. 18. Electric field strength of each component for (a) the vortex
O mode and (b) the vortex X mode averaged along ϕ′ (see Fig. 19)
as a function of ω2

pe/ω
2 in the case of l = 20 at r′ = 20λ0, and those

for the conventional O and X modes of a plane wave for comparison.

field strength of each component for the vortex O mode and
the vortex X mode in the case of l = 20 at r′ = 20λ0. The z

FIG. 19. Electric field strength of each component for (a-c) the vortex
O mode and (d-f) the vortex X mode as a function of ω2

pe/ω
2 and ϕ′

in the case of l = 20 at r′ = 20λ0.

component of the electric field, Ez, parallel to B0 is dominant
for the vortex O mode as in the conventional O mode with a
plane wave, but the finite strength of the other two compo-
nents, Ex and Ey, exist in a wide range of ne. The vortex O
mode is not the pure linear polarization directed in B0 and has
a component parallel to the propagation direction. Although
the conventional O mode is not affected by B0, the vortex O
mode is affected by B0 due to the new terms on nl in Eq. (15)
which include S with B0. It is noted that P−RL/S = P/S −1,
thus the terms on nl are not affected by R and L. This refractive
index with the wave with a helical wavefront suggests that the
vortex O mode can experience the effect of the upper hybrid
resonance (UHR) at S = 0 when nl ∝ |l|/r′ becomes large.
The vortex X mode shows a similar trend to the conventional
X mode with a plane wave but has a component parallel to B0.
The electric fields for both modes are modulated with ϕ′, but
the contribution of the nl terms to the the z′ components of the
refractive index is too small to change the refractive indices
of the vortex O and X modes compared to the conventional
modes with a plane wave.

The theory discussed here is valid for r0 limited by Eq. (8).
Under reasonable choices of l and L0, the element of the first
condition |l|λ0/(2π) is normally shorter than that of the second
condition

√|l|/(2π)
√
λ0L0. Thus, in the two cases of l = 1 and

l = 20 discussed above, r0 is chosen by the limit of the sec-
ond element. Aside from how an optical vortex with huge
l and a huge beam radius can be generated practically, it is
theoretically valuable to investigate the region where the first
element is greater than the second element, thus r0 is chosen
by the limit of the first element. Because nl is proportional

Solvability condition

The property of energy flux conservation in cold uniform
magnetized loss-free plasma can be found in plots of S in Eq. (14).
Figure 4 shows the electric field strength of each component for
the vortex R waves and the vortex L waves averaged on u as a func-
tion of x2

pe=x
2 in the cases of l¼ 1 and l¼ –1, respectively, at

r ¼ 5k0. Each electric field component of a plane wave is also
shown for comparison. The dependence of each electric field com-
ponent on u is shown in Fig. 5. The Poynting vectors as a function
of x2

pe=x
2 in these cases are shown in Fig. 6. Here, the scale length

L0 is chosen to be L0 ¼ 100k0, which satisfies the validity condi-
tions given by Eqs. (4) and (8). The chosen scale length is applied
to following results as well. The averaging operation on u for the
electric field strength and the Poynting vector is considered to be
worth performing because a photon rotates around the propaga-
tion axis, carrying OAM, in a classical point of view, as shown in
Fig. 1. In parallel propagation, the Poynting vector is axisymmetric
around the propagation axis, i.e., no dependence on u, although
the electric field is not axisymmetric. The L wave with positive
l and the R wave with negative l are not pure circular polarization
due to finite values of their parallel components. Because of the
dependence of Ez on P, in particular, the parallel components are
prominent at the plasma cutoff where P¼ 0. The calculated

Poynting vector shows the exchange of the energy flux between Sz
and Su according to the proportion of the parallel component
under the energy conservation in the propagation region where
Imnz0 ¼ Imnz ¼ 0. The u component Su means the rotating
energy flux along the helical wavefront. It is noted that Sr¼ 0 is sat-
isfied, so that the energy flux is neither dissipative nor radially dif-
fusive under r " S # 0. These properties are maintained with
increased l/r.

Interestingly for the vortex L wave in the case of l¼ 20 at
r ¼ 20k0 [which also satisfies the validity condition given by Eq.
(8)], as shown in Figs. 7–9, it is found that a reversal of the Sz
direction occurs at the plasma cutoff, where the absolute value of
the sum of the latter negative two terms of Sz given by Eq. (14)
becomes larger than the positive value of the first term. The wave
with n2z ¼ L > 0 propagates forward but the energy flows back-
ward, similar to a backward wave. The reversal area becomes
wider with increasing l/r.

D. Perpendicular propagation
Second, in the case of perpendicular propagation, i.e., h ¼ p=2,

the solvability condition Eq. (13) becomes

det

S $iDþ sgnðlÞnlnx inlnx

iDþ sgnðlÞnlnx S$ n2x þ n2l isgnðlÞn2l
inlnx isgnðlÞn2l P $ n2x $ n2l

0

BB@

1

CCA ¼ 0;

where

FIG. 18. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 19) as a function of x2

pe=x
2 in

the case of l¼ 20 at r 0 ¼ 20k0, and those for the conventional O and X modes of
a plane wave for comparison.

FIG. 19. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of

l¼ 20 at r 0 ¼ 20k0.
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p
; u0 ¼ tan&1
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:

The refractive index nz0 ¼ nx can be obtained as

n4x þ an2x þ b ¼ 0;

a ! & P þ RL
S

" #
& n2l

P
S
& 1

" #
;

b ! PRL
S
þ n2l P & RL

S

" #
;

[ n2x ¼
1
2
&a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 & 4b

p$ %
;

(15)

where the terms related to nl are additions to the refractive indices
with a plane wave. The two eigenmodes can be called the vortex ordi-
nary (O) mode and the vortex extraordinary (X) mode. The eigenmo-
des are reduced to the conventional O and X modes when the terms
related to nl vanishes, i.e., l¼ 0 or r0 ! 1, so that these refractive
indices depending on nl are noticeable in the optical vortex with a large
topological charge around the propagation axis. The z components of
the refractive index for parallel propagation do not depend on nl
because the direction of the wave vector k in relation to B0 is axisym-
metric around the propagation axis. On the other hand, the z0

components of the refractive index for perpendicular propagation are
modulated with u0 since the direction of k in relation to B0 changes
with u0 around the propagation axis. That is why the electric field for-
mulation in Eq. (3) is started with kz, assumed to be a function of r
andu. The relations of electric field components to calculate the polar-
ization are given by

~Ex ¼
1
S

iD& sgnðlÞnlnr
& '

~Ey & i
nlnr

S
~Ez;

~Ez ¼
ðD2 þ n2l n

2
rÞ & SðS& n2r þ n2l Þ

nl Dnr & isgnðlÞnln2r þ isgnðlÞnlS
& ' ~Ey;

ðr ¼ O;XÞ;

(16)

which satisfyr ' D ( 0, although ~EO ' ~E
)
X 6¼ 0.

In order to investigate the propagation properties of the vortex O
and X modes, the z0 components of the refractive index for the two
eigenmodes are calculated for the optical vortices with (i) l¼ 1 at r0

¼ 5k0 and (ii) l¼ 20 at r0 ¼ 20k0. Again, the scale length L0 is chosen
to be L0 ¼ 100k0, so that both cases satisfy the validity conditions
given by Eqs. (4) and (8). Figure 10 shows refractive indices for the
vortex O mode, nz0 ! nO, and the vortex X mode, nz0 ! nX, as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r0 ¼ 5k0. nO and nX are averaged

along u0 to be compared with the conventional O and X modes of a
plane wave. Figure 11 shows nO and nX as a function of x2

pe=x
2 and

u0 in the case of l¼ 1 at r0 ¼ 5k0. Figure 12 shows nO and nX of a
plane wave (l¼ 0) as a function of x2

pe=x
2 and u0 as a reference

although they do not depend on u0. Here, for l 6¼ 0, since there are

FIG. 20. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 21) as a
function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison.

FIG. 21. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l=ðr 0=k0Þ ¼ 2p. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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where the terms related to nl are additions to the refractive indices
with a plane wave. The two eigenmodes can be called the vortex ordi-
nary (O) mode and the vortex extraordinary (X) mode. The eigenmo-
des are reduced to the conventional O and X modes when the terms
related to nl vanishes, i.e., l¼ 0 or r0 ! 1, so that these refractive
indices depending on nl are noticeable in the optical vortex with a large
topological charge around the propagation axis. The z components of
the refractive index for parallel propagation do not depend on nl
because the direction of the wave vector k in relation to B0 is axisym-
metric around the propagation axis. On the other hand, the z0

components of the refractive index for perpendicular propagation are
modulated with u0 since the direction of k in relation to B0 changes
with u0 around the propagation axis. That is why the electric field for-
mulation in Eq. (3) is started with kz, assumed to be a function of r
andu. The relations of electric field components to calculate the polar-
ization are given by

~Ex ¼
1
S

iD& sgnðlÞnlnr
& '

~Ey & i
nlnr

S
~Ez;

~Ez ¼
ðD2 þ n2l n

2
rÞ & SðS& n2r þ n2l Þ

nl Dnr & isgnðlÞnln2r þ isgnðlÞnlS
& ' ~Ey;

ðr ¼ O;XÞ;

(16)

which satisfyr ' D ( 0, although ~EO ' ~E
)
X 6¼ 0.

In order to investigate the propagation properties of the vortex O
and X modes, the z0 components of the refractive index for the two
eigenmodes are calculated for the optical vortices with (i) l¼ 1 at r0

¼ 5k0 and (ii) l¼ 20 at r0 ¼ 20k0. Again, the scale length L0 is chosen
to be L0 ¼ 100k0, so that both cases satisfy the validity conditions
given by Eqs. (4) and (8). Figure 10 shows refractive indices for the
vortex O mode, nz0 ! nO, and the vortex X mode, nz0 ! nX, as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r0 ¼ 5k0. nO and nX are averaged

along u0 to be compared with the conventional O and X modes of a
plane wave. Figure 11 shows nO and nX as a function of x2

pe=x
2 and

u0 in the case of l¼ 1 at r0 ¼ 5k0. Figure 12 shows nO and nX of a
plane wave (l¼ 0) as a function of x2

pe=x
2 and u0 as a reference

although they do not depend on u0. Here, for l 6¼ 0, since there are

FIG. 20. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 21) as a
function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison.

FIG. 21. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l=ðr 0=k0Þ ¼ 2p. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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Refractive indices of “vortex” O and X modes in the ideal limit (l/r’ = k0)
22

11

shown in Figs. 20 and 21. The refractive indices nO and nX
deviate from the conventional ones of a plane wave, strongly
modulated with ϕ′. As suggested by the new terms on nl,
the vortex O mode is influenced by the UHR from the lower
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FIG. 20. The z′ components of the refractive index for (a)(b) the
vortex O mode and (c)(d) the vortex X mode, averaged along ϕ′ (see
Fig. 21), in the case of l/(r′/λ0) = 2π, and those for the conventional
O and X modes of a plane wave for comparison.

FIG. 21. The z′ components of the refractive index for (a)(b) the vor-
tex O mode and (c)(d) the vortex X mode as functions of ω2

pe/ω
2 and

ϕ′ in the case of l/(r′/λ0) = 2π. The refractive index larger/smaller
than 2/−2 is colored the same as 2/−2.
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FIG. 22. Electric field strength of each component for (a) the vortex
O mode and (b) the vortex X mode averaged along ϕ′ (see Fig. 23)
as a function of ω2

pe/ω
2 in the case of l/(r′/λ0) = 2π, and those for

the conventional O and X modes of a plane wave for comparison.

FIG. 23. Electric field strength of each component for (a-c) the vortex
O mode and (d-f) the vortex X mode as a function of ω2

pe/ω
2 and ϕ′

in the case of l/(r′/λ0) = 2π.

• Both refractive indices deviate from those in plane wave. 
- strongly modulated with φ 

• The “vortex” O mode is influenced by the upper hybrid 
resonance (UHR) from the lower ne side.


- affected by B0 

• The “vortex” X mode experiences UHR from the higher ne 
side and can propagate in the higher ne region.

T. I. Tsujimura & S. Kubo, Phys. Plasmas 28, 012502 (2021)
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The refractive index nz0 ¼ nz can be obtained as

ðn2z & RÞðn2z & LÞ ¼ 0;

[ n2z ¼ R ð! Sþ DÞ; L ð! S& DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z ! n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ (~Ex ðl ) 0Þ;

~ER ¼ 1; i
PDþ n2l ðP & n2RÞ
PD& n2l ðP & n2RÞ

; 2i
nlnRD
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while in the case of the vortex L wave, n2z ! n2L ¼ L, the electric field
components are

~EL ¼ 1;&i
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PDþ n2l ðP & n2LÞ

; 2i
nlnLD

PDþ n2l ðP & n2LÞ

" #
~Ex ðl ) 0Þ;

~EL ¼ 1;&i; 0½ (~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r * D + 1
2

ik * e0erðxÞ * ~Es
" #

& ik, * e0e,r ð&xÞ * ~E,s,
n oh i

¼ 0;

although ~ER * ~E
,
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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UHR

Electric fields of “vortex” O and X modes in the ideal limit (l/r’ = k0)
23

11

shown in Figs. 20 and 21. The refractive indices nO and nX
deviate from the conventional ones of a plane wave, strongly
modulated with ϕ′. As suggested by the new terms on nl,
the vortex O mode is influenced by the UHR from the lower
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FIG. 20. The z′ components of the refractive index for (a)(b) the
vortex O mode and (c)(d) the vortex X mode, averaged along ϕ′ (see
Fig. 21), in the case of l/(r′/λ0) = 2π, and those for the conventional
O and X modes of a plane wave for comparison.

FIG. 21. The z′ components of the refractive index for (a)(b) the vor-
tex O mode and (c)(d) the vortex X mode as functions of ω2

pe/ω
2 and

ϕ′ in the case of l/(r′/λ0) = 2π. The refractive index larger/smaller
than 2/−2 is colored the same as 2/−2.
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FIG. 22. Electric field strength of each component for (a) the vortex
O mode and (b) the vortex X mode averaged along ϕ′ (see Fig. 23)
as a function of ω2

pe/ω
2 in the case of l/(r′/λ0) = 2π, and those for

the conventional O and X modes of a plane wave for comparison.

FIG. 23. Electric field strength of each component for (a-c) the vortex
O mode and (d-f) the vortex X mode as a function of ω2

pe/ω
2 and ϕ′

in the case of l/(r′/λ0) = 2π.

• The E fields entirely deviate from those in a plane wave. 
• “Vortex” O mode


- not pure linear polarization directed in B0 
- has a component parallel to the propagation direction 

• “Vortex” X mode

- has a component parallel to B0 

• Expectation that the E fields of both modes become similar to 
each other around UHR when l/r’ can be much larger.

- l/r’ > k0 is not accessible in this theory. 
- accessible when the ordering assumptions can be relaxed to 

treat smaller r0 and a PDE for a complex phase function can 
be solved → future work

T. I. Tsujimura & S. Kubo, Phys. Plasmas 28, 012502 (2021)
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Does more-advanced theory suggest direct mode conversion?
24

vortex O mode 
excited from  
the low-B & 
low-ne side

vortex X mode? 
or vortex electron Bernstein mode? 
propagate into high-B & high-ne region 
to heat plasma at ECR

UHR UHR

Ex parallel to the propagation direction 
would become the largest component for 
both modes with a high wavenumber 
around UHR.

fut
ure

 w
ork

→ New tool to heat high-ne plasma?
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shown in Figs. 20 and 21. The refractive indices nO and nX
deviate from the conventional ones of a plane wave, strongly
modulated with ϕ′. As suggested by the new terms on nl,
the vortex O mode is influenced by the UHR from the lower
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FIG. 20. The z′ components of the refractive index for (a)(b) the
vortex O mode and (c)(d) the vortex X mode, averaged along ϕ′ (see
Fig. 21), in the case of l/(r′/λ0) = 2π, and those for the conventional
O and X modes of a plane wave for comparison.

FIG. 21. The z′ components of the refractive index for (a)(b) the vor-
tex O mode and (c)(d) the vortex X mode as functions of ω2

pe/ω
2 and

ϕ′ in the case of l/(r′/λ0) = 2π. The refractive index larger/smaller
than 2/−2 is colored the same as 2/−2.
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FIG. 22. Electric field strength of each component for (a) the vortex
O mode and (b) the vortex X mode averaged along ϕ′ (see Fig. 23)
as a function of ω2

pe/ω
2 in the case of l/(r′/λ0) = 2π, and those for

the conventional O and X modes of a plane wave for comparison.

FIG. 23. Electric field strength of each component for (a-c) the vortex
O mode and (d-f) the vortex X mode as a function of ω2

pe/ω
2 and ϕ′

in the case of l/(r′/λ0) = 2π.

mode conversion?
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Propagation of an EC wave with a helical wavefront with 3D simulations
26

a cube with a side  
length of 20 mm 

Mesh size:  
max. 0.3 mm, min. 0.03 mm

B0 = (0, 0, B0), B0 = 2 T (66)

E = E0
r2

w2(x)
exp

[
− r2

w2(x)
+ i

{
−k20

r2

R(x)
− lϕ+ (|l|+ 1)ζ(x)

}]

r2 = y2 + z2, w(x) = w0

√

1 +

(
x− zR
zR

)2

, R(x) = (x− zR)

{
1 +

(
zR

x− zR

)2
}
,

ζ(x) = tan−1 x− zR
zR

, ϕ = tan−1 y

−z

l̂ =
c

ω

|l|
w
, w = −z + iy (67)

∇×∇×E − k20εr ·E = 0 (68)

E ∝ exp{ilϕ− i(l + 1)ωt}e+ (69)

l! (70)

P = 1−
ω2
pe

ω(ω + iν0)
(71)

R = 1−
ω2
pe

ω(ω + iν0 − ωce)
(72)

L = 1−
ω2
pe

ω(ω + iν0 + ωce)
(73)

S =
1

2
(R+ L) (74)

D =
1

2
(R− L) (75)

6

f = 77 GHz, ν0 = 0.01ω, Bz0 = 2 T, xR = 10 mm, w0 = 3.5 mm

Electric field

Uniform plasma in y and z directions

Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r! ðr! EÞ $ k20er % E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ $ xtÞ½ ) þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w$ xtÞ½ )

þ~E
*
a*rjlj exp ið$lu$ w* þ xtÞ

! "o
; (3)

where

wðr;u; zÞ ¼
ðz

0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w$ xtÞ),

erðxÞ % E ¼
1
2

erðxÞ % ~Esþ e*r ð$xÞ % ~E*s*
n o

can be obtained based on the identity erðxÞ ¼ e*r ð$xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s*

corresponds to the angular frequency$x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

! ¼ k0
L0
+ 1 (4)

and

jr~Erj
j~Ej

, 1
L0
;
jr! ðr! ~EÞj

j~Ej
, 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform
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ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ $i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ $i jlj
r
er þ

l
r
eu þ kzez

¼ $i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r . r0 > 0. In the region r . r0, a natural approach would be to look
for a solution such that

jkj , jkzj , k0 ¼
2p
k0
; jrkrj ,

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 /

2l2

r20
þ jkzj2;

the condition jkj , 2p=k0 leads to

jkzj , k0 ¼
2p
k0

and

l2

r20
/ 4p2

k20
;

[ r0 .
jlj
2p

k0:
(6)

For the gradients of the complex wave vector, it can be written that
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!k ¼ !kz0ez0 , where the wave vector is redefined in the coordinate system
as

k ¼ kr0 þ ku0 þ kz0 ;

kr0 ¼ #i
jlj
r0
ðcosu0 cos h; sinu0;#cosu0 sin hÞ;

ku0 ¼
l
r0
ð#sinu0 cos h; cosu0; sinu0 sin hÞ;
kz0 ¼ ðkz0 sin h; 0; kz0 cos hÞ;

!kz0 ¼
1
2p

ð2p

0
kz0du0:

The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by

erðxÞ ¼
SðxÞ #iDðxÞ 0

iDðxÞ SðxÞ 0

0 0 PðxÞ

0

BB@

1

CCA; e&r ð#xÞ ¼ erðxÞ; (11)

where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as

1
2

Kðx; kÞ ' ~Es0 þ K&ð#x; kÞ ' ~E&ðs0Þ&
" #

¼ 0; (12)

where

Kðx; kÞ ( k ) k # ðk ' kÞI þ k20erðxÞ;
s0 ( aðr0Þjlj exp iðlu0 þ w0 # xtÞ

" #
:

The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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field side, whose disadvantage is that the X mode should penetrate
through the evanescent region. This paper focuses only on the
propagation properties in cold plasma under the strong limitation
in the ordering assumptions. This new suggestion for the mode
conversion should be verified also in a future article.

Contrary to parallel propagation, the refractive index, the electric
field, and the Poynting vector in perpendicular propagation are not
axisymmetric. However, the property of constant energy flux averaged
along u0 can be maintained. Figures 24–29 show the Poynting vectors
in the cases of l¼ 1 at r0 ¼ 5k0, l¼ 20 at r0 ¼ 20k0, and ideal
l=ðr0=k0Þ ¼ 2p. For a reference, the dependence of the Poynting vec-
tor for a plane wave is also shown in Fig. 30. It is noted thatr $ S % 0
is satisfied locally in all three cases. Although the calculated Poynting
vector shows the exchange of the energy flux among all three compo-
nents including Sr0 under the energy conservation in the propagation
region where Imnz0 ¼ Imnx ¼ 0, the averaged Sr0 along u0 over a
period from 0 to 2p becomes zero. Therefore, the property of constant
non-dissipative radially-non-diffusive energy flux is maintained under
the energy conservation even if n is complex due to the helical wave-
front structure. It is anticipated that in increased jlj=r0 the energy

averagely flows forward along with the rotating energy flux in the
plasma beyond the plasma cutoff for the vortex O mode and the left-
hand cutoff for the vortex X mode.

III. PROPAGATION OF AN EC WAVE WITH A HELICAL
WAVEFRONT WITH 3D SIMULATIONS

Propagation properties of an EC wave with a helical wavefront
are discussed in Sec. II by using Eq. (10), which is suitable for investi-
gating analytically as has been done with a plane wave. In real situa-
tions for practical use, however, the wave amplitude is restricted to a
finite beam size. In this section, propagation of LG beams is numeri-
cally investigated with 3D simulations by the commercial FEM (finite
element method) software, COMSOL Multiphysics with its RF
solver.15–18 The simulation box is limited to a cube with a side length
of 20mm due to computational resources. The size of tetrahedral
meshes is 0.3mm at a maximum and 0.03mm at a minimum. The
wave frequency f is set at 77GHz. The static magnetic field B0 is set at
2T in the z direction. In order to excite the O mode, Ez in a form of
the LG beam is excited at the plane of x¼ 0, given by

Ezðx; y; zÞ ¼ E0
r2

w2ðxÞ

 !jlj
w0

wðxÞ

& exp ' r2

wðxÞ2
þ i 'k0

r2

2RðxÞ
' luþ ðjljþ 1ÞfðxÞ

( )" #

at x ¼ 0; ð17Þ

FIG. 26. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison. The Poynting vectors are
normalized by the averaged jSj value along u0 from 0 to 2p (see Fig. 27).

FIG. 27. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l¼ 20 at r 0 ¼ 20k0. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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where

r2 ¼ y2 þ z2; u ¼ tan#1
y
#z ;

wðxÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x # xR
xR

" #2
s

; xR ¼
pw2

0

k0
;

RðxÞ ¼ ðx # xRÞ 1þ xR
x # xR

" #2
( )

; fðxÞ ¼ tan#1
x # xR
xR

:

The focal point xR is set at 10mm and the beam waist w0 becomes
3.5mm in the vacuum. Propagation of the excited wave in the x
direction is calculated by solving the telegraphic equation given by
Eq. (2). Here, the cold plasma dielectric tensor er given in Eq. (11)
includes the effect of collisions1 with the artificial collision fre-
quency of !0 ¼ 0:01x. The specific number of 0.01 is simply an ad
hoc number in order to prevent numerical divergence at the UHR
where resonant waves with high wavenumbers should be collision-
ally damped. The scattering boundary condition (SBC) is applied
to the boundaries of the cube so that waves can pass through the

domain boundaries without reflection. The SBC is one of the
ready-made functions of the COMSOL RF solver. A numerical test
of LG beam propagation is performed in the vacuum condition to
be compared with theoretical LG beam propagation. The result
shows good agreement with each other.

In order to confirm whether the COMSOL model is correctly
constructed, the refractive indices are calculated with COMSOL under
constant ne in the modeling domain. Figure 31 shows the comparison
of the theoretical refractive indices calculated from Eq. (15) and those
calculated with the COMSOL model in the case of l¼ 1. The refractive
index for each COMSOL simulation is obtained by fitting the electric
field profile to the LG beam given by Eq. (17). The results indicate that
the COMSOL simulations reproduce the theoretical refractive indices
in the case of l¼ 1.

Then, propagation of LG beams is calculated under a varied ne
profile. The ne profile is set to change in the x direction, given by
neðxÞ ¼ ne;maxx=Ln, where ne;max ¼ 5& 1019 m#3 and Ln¼ 20mm.
Thus, the R cutoff layer and the UHR layer exist in the simulation box.
The magnetized plasma is uniform in the y and z directions. Figure 32
shows the amplitude distributions of Ez and Ex on the x-y plane at
z¼ 0mm in the case of l¼ 0. The topological charge of l¼ 0 means
the conventional Gaussian beam without OAM, which is commonly
used for EC heating and current drive in magnetic fusion plasma. The
excited linearly polarized Ez parallel to B0 is observed to propagate in
the x direction, under the O-mode polarization maintained. The
amplitude of Ex is negligible in comparison to that of Ez. Although a

FIG. 28. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison. The Poynting vectors are normal-
ized by the averaged jSj value along u0 from 0 to 2p (see Fig. 29).

FIG. 29. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l=ðr 0=k0Þ ¼ 2p. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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where

r2 ¼ y2 þ z2; u ¼ tan#1
y
#z ;

wðxÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x # xR
xR

" #2
s

; xR ¼
pw2

0

k0
;

RðxÞ ¼ ðx # xRÞ 1þ xR
x # xR

" #2
( )

; fðxÞ ¼ tan#1
x # xR
xR

:

The focal point xR is set at 10mm and the beam waist w0 becomes
3.5mm in the vacuum. Propagation of the excited wave in the x
direction is calculated by solving the telegraphic equation given by
Eq. (2). Here, the cold plasma dielectric tensor er given in Eq. (11)
includes the effect of collisions1 with the artificial collision fre-
quency of !0 ¼ 0:01x. The specific number of 0.01 is simply an ad
hoc number in order to prevent numerical divergence at the UHR
where resonant waves with high wavenumbers should be collision-
ally damped. The scattering boundary condition (SBC) is applied
to the boundaries of the cube so that waves can pass through the

domain boundaries without reflection. The SBC is one of the
ready-made functions of the COMSOL RF solver. A numerical test
of LG beam propagation is performed in the vacuum condition to
be compared with theoretical LG beam propagation. The result
shows good agreement with each other.

In order to confirm whether the COMSOL model is correctly
constructed, the refractive indices are calculated with COMSOL under
constant ne in the modeling domain. Figure 31 shows the comparison
of the theoretical refractive indices calculated from Eq. (15) and those
calculated with the COMSOL model in the case of l¼ 1. The refractive
index for each COMSOL simulation is obtained by fitting the electric
field profile to the LG beam given by Eq. (17). The results indicate that
the COMSOL simulations reproduce the theoretical refractive indices
in the case of l¼ 1.

Then, propagation of LG beams is calculated under a varied ne
profile. The ne profile is set to change in the x direction, given by
neðxÞ ¼ ne;maxx=Ln, where ne;max ¼ 5& 1019 m#3 and Ln¼ 20mm.
Thus, the R cutoff layer and the UHR layer exist in the simulation box.
The magnetized plasma is uniform in the y and z directions. Figure 32
shows the amplitude distributions of Ez and Ex on the x-y plane at
z¼ 0mm in the case of l¼ 0. The topological charge of l¼ 0 means
the conventional Gaussian beam without OAM, which is commonly
used for EC heating and current drive in magnetic fusion plasma. The
excited linearly polarized Ez parallel to B0 is observed to propagate in
the x direction, under the O-mode polarization maintained. The
amplitude of Ex is negligible in comparison to that of Ez. Although a

FIG. 28. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison. The Poynting vectors are normal-
ized by the averaged jSj value along u0 from 0 to 2p (see Fig. 29).

FIG. 29. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l=ðr 0=k0Þ ¼ 2p. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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where

r2 ¼ y2 þ z2; u ¼ tan#1
y
#z ;

wðxÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x # xR
xR

" #2
s

; xR ¼
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0

k0
;

RðxÞ ¼ ðx # xRÞ 1þ xR
x # xR

" #2
( )

; fðxÞ ¼ tan#1
x # xR
xR

:

The focal point xR is set at 10mm and the beam waist w0 becomes
3.5mm in the vacuum. Propagation of the excited wave in the x
direction is calculated by solving the telegraphic equation given by
Eq. (2). Here, the cold plasma dielectric tensor er given in Eq. (11)
includes the effect of collisions1 with the artificial collision fre-
quency of !0 ¼ 0:01x. The specific number of 0.01 is simply an ad
hoc number in order to prevent numerical divergence at the UHR
where resonant waves with high wavenumbers should be collision-
ally damped. The scattering boundary condition (SBC) is applied
to the boundaries of the cube so that waves can pass through the

domain boundaries without reflection. The SBC is one of the
ready-made functions of the COMSOL RF solver. A numerical test
of LG beam propagation is performed in the vacuum condition to
be compared with theoretical LG beam propagation. The result
shows good agreement with each other.

In order to confirm whether the COMSOL model is correctly
constructed, the refractive indices are calculated with COMSOL under
constant ne in the modeling domain. Figure 31 shows the comparison
of the theoretical refractive indices calculated from Eq. (15) and those
calculated with the COMSOL model in the case of l¼ 1. The refractive
index for each COMSOL simulation is obtained by fitting the electric
field profile to the LG beam given by Eq. (17). The results indicate that
the COMSOL simulations reproduce the theoretical refractive indices
in the case of l¼ 1.

Then, propagation of LG beams is calculated under a varied ne
profile. The ne profile is set to change in the x direction, given by
neðxÞ ¼ ne;maxx=Ln, where ne;max ¼ 5& 1019 m#3 and Ln¼ 20mm.
Thus, the R cutoff layer and the UHR layer exist in the simulation box.
The magnetized plasma is uniform in the y and z directions. Figure 32
shows the amplitude distributions of Ez and Ex on the x-y plane at
z¼ 0mm in the case of l¼ 0. The topological charge of l¼ 0 means
the conventional Gaussian beam without OAM, which is commonly
used for EC heating and current drive in magnetic fusion plasma. The
excited linearly polarized Ez parallel to B0 is observed to propagate in
the x direction, under the O-mode polarization maintained. The
amplitude of Ex is negligible in comparison to that of Ez. Although a

FIG. 28. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison. The Poynting vectors are normal-
ized by the averaged jSj value along u0 from 0 to 2p (see Fig. 29).

FIG. 29. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l=ðr 0=k0Þ ¼ 2p. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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where
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The focal point xR is set at 10mm and the beam waist w0 becomes
3.5mm in the vacuum. Propagation of the excited wave in the x
direction is calculated by solving the telegraphic equation given by
Eq. (2). Here, the cold plasma dielectric tensor er given in Eq. (11)
includes the effect of collisions1 with the artificial collision fre-
quency of !0 ¼ 0:01x. The specific number of 0.01 is simply an ad
hoc number in order to prevent numerical divergence at the UHR
where resonant waves with high wavenumbers should be collision-
ally damped. The scattering boundary condition (SBC) is applied
to the boundaries of the cube so that waves can pass through the

domain boundaries without reflection. The SBC is one of the
ready-made functions of the COMSOL RF solver. A numerical test
of LG beam propagation is performed in the vacuum condition to
be compared with theoretical LG beam propagation. The result
shows good agreement with each other.

In order to confirm whether the COMSOL model is correctly
constructed, the refractive indices are calculated with COMSOL under
constant ne in the modeling domain. Figure 31 shows the comparison
of the theoretical refractive indices calculated from Eq. (15) and those
calculated with the COMSOL model in the case of l¼ 1. The refractive
index for each COMSOL simulation is obtained by fitting the electric
field profile to the LG beam given by Eq. (17). The results indicate that
the COMSOL simulations reproduce the theoretical refractive indices
in the case of l¼ 1.

Then, propagation of LG beams is calculated under a varied ne
profile. The ne profile is set to change in the x direction, given by
neðxÞ ¼ ne;maxx=Ln, where ne;max ¼ 5& 1019 m#3 and Ln¼ 20mm.
Thus, the R cutoff layer and the UHR layer exist in the simulation box.
The magnetized plasma is uniform in the y and z directions. Figure 32
shows the amplitude distributions of Ez and Ex on the x-y plane at
z¼ 0mm in the case of l¼ 0. The topological charge of l¼ 0 means
the conventional Gaussian beam without OAM, which is commonly
used for EC heating and current drive in magnetic fusion plasma. The
excited linearly polarized Ez parallel to B0 is observed to propagate in
the x direction, under the O-mode polarization maintained. The
amplitude of Ex is negligible in comparison to that of Ez. Although a

FIG. 28. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison. The Poynting vectors are normal-
ized by the averaged jSj value along u0 from 0 to 2p (see Fig. 29).

FIG. 29. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l=ðr 0=k0Þ ¼ 2p. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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• The theory suitable analytically as in a plane wave

• Wave amplitude restricted to a finite beam size for practical use

‣ a Laguerre-Gaussian beam 
• Commercial COMSOL Multiphysics with RF solver

- finite element method 
- scattering boundary condition
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In the case of l = 0, the O mode propagates 

• The excited linearly polarized Ez parallel to B0 
propagates in the x direction.
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FIG. 31. Refractive indices of (a) the O mode and (b) the X mode
calculated from Eq. (15) averaged along ϕ′ in the case of l = 1 and
r′ = 5λ0, and those calculated with COMSOL simulations in the case
of w0 = 3.5 mm under constant ne.

FIG. 32. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane
at z = 0 mm in the case of l = 0.

a more complicated wave patter of Ez such as higher-order
modes is observed. This pattern is not observed in lower ne
plasma. This cause is not clear yet but the scattered waves
by relatively high ne plasma may be partially reflected at the
boundaries. Larger simulation boxes may improve purity of
the mode pattern. Figure 33 shows phase distributions of Ez
and Ex on the y-z planes at x = 0 mm and x = 20 mm. The
phase is calculated by Eσ = tan−1(Im Eσ/Re Eσ) for σ = z, x.
The phase distribution of Ez at x = 0 mm follows the con-
tours of the function lϕ mod 2π. Due to zero OAM, the phase
of Ez is almost axisymmetric around the propagation axis of
y = z = 0 mm. The phase distribution of Ex shows discon-
tinuities, e.g., at z = 0 mm. Although the amplitude of Ex is
negligible compared to that of Ez, finite Ex exists and it seems
that the polarity of Ex changes at z = 0 mm. However, this
phase pattern is not characterized with lϕ of an optical vortex.

A remarkable phenomenon is observed in the propagation
of an EC wave with a helical wavefront in the case of l = 1, as

FIG. 33. Phase distributions of (a)(c) Ez and (b)(d) Ex on the y-z
planes at (a)(b) x = 0 mm and (c)(d) x = 20 mm in the case of l = 0.
Note that the phase distribution of Ez at x = 0 follows the contours
of the function lϕ mod 2π.

shown in Figs. 34 and 35. The excited LG beam Ez with l = 1
propagates to the UHR layer with S = 0. Then, the beam is
observed to diffuse outward over the UHR layer, while Ex par-
allel to the propagation direction with the wavenumber much
higher than that of Ez is observed to be excited and to propa-
gate to the higher ne region. The amplitude of Ex seems to be
larger around the propagation axis, while that of Ez is smaller
due to the outward diffusion. This result suggests that a por-
tion of Ez with the O-mode polarization is converted into Ex
with the X-mode polarization. The phase distribution of Ex
around the propagation axis with a smaller radius shows the
property of l = 0, while that of Ez shows the property of l = 1,
probably because the relation of Ex and Ez shown in Eq. (16)
indicates that the topological charge of Ex is one smaller than
that of Ez due to the factor of 1/eiϕ. The property of l = 0 in
Ex is recognized in Fig. 34(b), where the amplitude of Ex is
similar to a plane wave with high wavenumbers. It is noted
that when the LG beam with the X-mode polarization is ex-
cited, the X mode is reflected at the R cutoff layer and cannot

FIG. 34. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane
at z = 0 mm in the case of l = 1.
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a more complicated wave patter of Ez such as higher-order
modes is observed. This pattern is not observed in lower ne
plasma. This cause is not clear yet but the scattered waves
by relatively high ne plasma may be partially reflected at the
boundaries. Larger simulation boxes may improve purity of
the mode pattern. Figure 33 shows phase distributions of Ez
and Ex on the y-z planes at x = 0 mm and x = 20 mm. The
phase is calculated by Eσ = tan−1(Im Eσ/Re Eσ) for σ = z, x.
The phase distribution of Ez at x = 0 mm follows the con-
tours of the function lϕ mod 2π. Due to zero OAM, the phase
of Ez is almost axisymmetric around the propagation axis of
y = z = 0 mm. The phase distribution of Ex shows discon-
tinuities, e.g., at z = 0 mm. Although the amplitude of Ex is
negligible compared to that of Ez, finite Ex exists and it seems
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observed to diffuse outward over the UHR layer, while Ex par-
allel to the propagation direction with the wavenumber much
higher than that of Ez is observed to be excited and to propa-
gate to the higher ne region. The amplitude of Ex seems to be
larger around the propagation axis, while that of Ez is smaller
due to the outward diffusion. This result suggests that a por-
tion of Ez with the O-mode polarization is converted into Ex
with the X-mode polarization. The phase distribution of Ex
around the propagation axis with a smaller radius shows the
property of l = 0, while that of Ez shows the property of l = 1,
probably because the relation of Ex and Ez shown in Eq. (16)
indicates that the topological charge of Ex is one smaller than
that of Ez due to the factor of 1/eiϕ. The property of l = 0 in
Ex is recognized in Fig. 34(b), where the amplitude of Ex is
similar to a plane wave with high wavenumbers. It is noted
that when the LG beam with the X-mode polarization is ex-
cited, the X mode is reflected at the R cutoff layer and cannot

FIG. 34. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane
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FIG. 35. Phase distributions of (a)(c) Ez and (b)(d) Ex on the y-z
planes at (a)(b) x = 0 mm and (c)(d) x = 20 mm in the case of l = 1.
Note that the phase distribution of Ez at x = 0 follows the contours
of the function lϕ mod 2π.

FIG. 36. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane
at z = 0 mm in the case of l = 2.

propagate through the evanescent region between the R cutoff
layer and the UHR layer, so that the significant proportion of
Ex shown in Fig. 34(b) is considered to be the X mode con-
verted from the O mode. Figures 36 and 37 show the case of
the LG beam excited with l = 2. In a manner similar to the
case of l = 1, Ex with the high wavenumber is excited at the
UHR layer. The topological charge of Ex is l = 1 around the
propagation axis. Neither larger simulation boxes nor larger l
can be processed at the moment due to limited computational
resources.

IV. SUMMARY AND OUTLOOK

Propagation properties of EC waves with helical wave-
fronts are investigated theoretically in cold uniform magne-
tized plasma. The effects of the helical wavefront on the wave
fields are described. Those effects are significant as the topo-
logical charge of the vortex EC wave increases and the dis-

FIG. 37. Phase distributions of (a)(c) Ez and (b)(d) Ex on the y-z
planes at (a)(b) x = 0 mm and (c)(d) x = 20 mm in the case of l = 2.
Note that the phase distribution of Ez at x = 0 follows the contours
of the function lϕ mod 2π.

tance from the propagation axis becomes small. The differ-
ent properties of propagation are also confirmed in COMSOL
simulations with LG beams. It is found that a part of the O-
mode LG beam with the topological charge l excited at the
lower ne region is converted into the high-wavenumber X-
mode LG beam with l − 1 at the UHR.

In order to demonstrate the new propagation properties of
vortex EC waves in heating and current-drive experiments,
an optical vortex with desired l must be generated in the
millimeter-wave transmission system and launched into mag-
netic fusion plasma. A spiral-shaped mirror has been devel-
oped to generate an optical vortex with designed l in a fre-
quency range of millimeter waves.19 Thus, an optical vortex
can be generated by installing the spiral-shaped mirror be-
tween a gyrotron and launching antenna mirrors in the exist-
ing transmission line. This enables verification of whether an
optical vortex can be a tool to heat high-ne plasma.
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In the case of l = 1,  
a part of the O mode is suggested to be converted to the high-wavenumber X mode

• The excited LG beam Ez propagates to UHR.

- Diffuse outward over the UHR layer 
- Ex parallel to the propagation direction with higher 

wavenumber is excited at UHR and propagates to the 
higher ne region. 

- The amplitude Ex is larger around the optical axis. 
• A part of Ez with the O-mode polarization is converted 

into Ex with the X-mode polarization.
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 a part of the O mode is suggested to be converted to the high-wavenumber X mode

29

16
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planes at (a)(b) x = 0 mm and (c)(d) x = 20 mm in the case of l = 1.
Note that the phase distribution of Ez at x = 0 follows the contours
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Ex shown in Fig. 34(b) is considered to be the X mode con-
verted from the O mode. Figures 36 and 37 show the case of
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case of l = 1, Ex with the high wavenumber is excited at the
UHR layer. The topological charge of Ex is l = 1 around the
propagation axis. Neither larger simulation boxes nor larger l
can be processed at the moment due to limited computational
resources.
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quency range of millimeter waves.19 Thus, an optical vortex
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lower ne region is converted into the high-wavenumber X-
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Ex with the high wavenumber is excited at UHR.

The topological charge of Ex is l = 1 
around the optical axis.
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Summary

• Propagation properties of EC waves with helical wavefronts are 
investigated theoretically in cold uniform magnetized plasma. 

- The effects of the helical wavefronts on the wave fields are described. 
- These effects become significant as the topological charge of the vortex EC wave 

increases or the distance from the optical axis becomes small. 

• The different properties of propagation are also confirmed in COMSOL 
simulations with LG beams. 

- It is found that a part of the O-mode LG beam with the topological charge l 
excited at the lower ne region is converted into the high-wavenumber X-mode LG 
beam with l − 1 at UHR.
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Outlook
32

spiral phase mirror

T. I. Tsujimura et al., Rev. Sci. Instrum. 93, 043507 (2022)

To demonstrate the new propagation properties of vortex EC waves in plasma heating experiments, 
off-axis spiral-phase mirrors were developed to generate an optical vortex with designed l in 
millimeter waves.

- generated vortex mm waves will be injected into fusion plasma 
- to verify whether an optical vortex can be a new tool to efficiently heat high-ne plasma


