

University of Stuttgart

Institute of Interfacial Process Engineering and Plasma Technology

Simulation and reflectivity measurements of the ITER first plasma beam dump material

Andreas Hentrich, Venancio Martinez Garcia, Andreas Killinger, Burkhard Plaum, Carsten Lechte, Günter Tovar

Content

- Sample production
- Measurements
- Model
- Comparison
- Results:
 - Dependency on absorptivity
 - Angle dependency suppression
- Conclusion and outlook

Sample Production Grit blasting and plasma spraying

Measurements Network analyzer, 2 horn antennas and enough patience

limited

Model Plane waves

Summary:

- plane waves
- multiple reflections
- intermediate absorptivity

$$k_{layer} = \sqrt{\frac{\sqrt{n_{layer}^4 k_0^4 + k_0^2 c^2 \mu_{layer}^2 A_{layer}^2 + n_{layer}^2 k_0^2}{2}}$$

With: $A_{layer} = \omega * \epsilon'' + \sigma$

Restrictions:

- surface roughness ignored
- evanescent waves in metal ignored
- single frequency only
- too high absorption or too thick
 layers lead to bad fits

University of Stuttgart

Comparison Thickness dependency

Comparison Angle dependency

Results Counter-intuitive absorption coefficient dependency

Results Counter-intuitive absorption coefficient dependency

Results Suppression of angle dependency

Expectation: Incidence angle changes resonant thickness

Results Suppression of angle dependency

Reality: Resonant thickness almost independent of angle

Conclusion and Outlook

- Samples can be produced reliably with plasma spraying
- Aluminium-Titaniumoxid = best candidate
- Plane wave model describes dependencies sufficiently
- Depending on polarization and angle, 50% >90% at the resonance thickness is realistic
- "A lot helps a lot" not true for absorption coefficient here
- Surprisingly good for stray radiation
- Next: Change proportions for beam dump by design
 - Temperature dependency + stability

University of Stuttgart

Institute of Interfacial Process Engineering and Plasma Technology

Thank you!

Andreas Hentrich

e-mail andreas.hentrich@igvp.uni-stuttgart.de

Further information:

- Conference proceedings for more exact description of dependencies
- "Resonant Atmospheric Plasma-Sprayed Ceramic Layers Effectively absorb Microwaves at 170 GHz" in International Journal of Infrared and Millimeter Waves (accepted) for more exact description of material, measurements and model