Electron cyclotron heating assisted start-up experiments in J-TEXT

Junli Zhang¹, Peter C de Vries², Kazunobu Nagasaki³, Donghui Xia¹, Wei Jiang⁴, Zhijiang Wang¹, Yuan Pan¹ and J-TEXT Team¹

- 1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, HUST, Wuhan, China
- 2 ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance, France
- 3 Institute of Advanced Energy, Kyoto University, Uji, Japan
- 4 School of Physics, Huazhong University of Science and Technology

I. Research background

Start-up is the first stage of tokamak operation.

For ITER,

- Low toroidal electric field of 0.3V/m to support breakdown in 2025
- The required ECH power to ensure an effective breakdown assist at ITER is not yet clear.
- J-TEXT has conducted the Electron cyclotron heating (ECH) assist start-up experiments since 2019. These experiments aimed to
- Determine the minimum ECH requirements to assist in the breakdown
- Develop a better physics description of the process.

II. Experimental setup

Typical discharges

Conventional pure Ohmic heating start-up: #1068920

Critical pure Ohmic heating start-up: #1065724 Typical EC assist start-up: #1068924

Phenomenon:

- Apparent differences in breakdown voltage Loop voltage: $34 \rightarrow 3.7V (0.56V/m)$ 125 kW X2-mode ECH
- Ha and ne appears earlier (~15ms delay)
- Vot-seconds consumed, but also low plasma current

Resources

- ECH system (105GHz/500kW/1s)
- Polaris
- PDA
- Vacuum gauge
- Fast camera
- Gas puffing (applied before ECH applied)

II. Experimental results

Evolution of different signals when discharging with ionization capacitor of 1600 V (red), 800 V (cyan) and 1V (blue). The last one is assisted with 300 kW ECH power while two others are pure Ohmic heating

ECH power studies

Evolution of key signals with different ECH power for assist start-up

Explanation:

ECH pre-ionization \rightarrow seed electrons \rightarrow easy breakdown

Phenomenon:

High power leads to low breakdown delay, high initial plasma density

Simple conclusion

Critical power of ECH assist start-up is ~200kW

Phenomenon:

Low ECH power leads to failed discharge **Explanation**:

Low ECH power→high toroidal field(Power compensation) \rightarrow "abnormal" density distribution

(b)

Given Stray field

0.3 0.2 0.1 Z(m) -0.1 -0.2 -0.3 0.7 1.1 1.2 1.3 1.4 R(m)

Field null structure, calculated by EFUND

Apparent ECH pre-ionization phenomenon

Distribution of poloidal stray field before toroidal electric field applied

 $L_{eff} = 0.25 \times a_{eff} B_T / B_\perp \approx 500m$

Electric field studies

Critical toroidal field: E~2V/m Minium toroidal field: E~0.56V/m $(300 \text{kW}, \text{X2}, \theta = 3^{\circ})$

Photos of ECH pre-ionization by fast camera

ECH pulse width studies

Evolution of key signals for different ECH pulse width.

Phenomenon:

- ECH power is off, density decreases while plasma loop voltage increases
- Low power and short pulse shot (blue) works well

Explanations:

- Enough power is needed for burn-through. (same to the former)
- Lower power and less time to generates enough electrons, forming better plasma distribution(Semi conjecture)

Some discharge results with different ECH pulse width

T _{on} (ms)	t _{off} (ms)	result
-25	10	success
-15	10	success
-5	10	failure
-25	5	failure
-35	8	failure

IV. Summary

- Breakdown voltage reduced from 34 V to 3.7V (0.56V/m) by 125 kW X2-mode ECH
- Critical power of ECH assist start-up is ~200kW if ECH is injected for a long time.

Relationship between toroidal field and voltage of ionized capacitor. Blue: pure Ohmic start-up Red: EC assist start-up. Circle: successful discharges Asterisk: failed shot

Toroidal electric field limitation

Wall conditioning Hysteresis effect

Hypothesis

Relationship between initial density, toroidal electric field and breakdown delay

- High power leads to faster and stronger breakdown. Low ECH power will fail during burn-through because of lack of input power.
- A short pulse width and low ECH power can achieve a similar effect as long pulse width and high ECH power if it injects at a proper time.

Reference

[1] P. De Vries, Y. Gribov, Nuclear Fusion 59, 096043 (2019) [2] B. Lloyd, G. Jackson, T. Taylor, E. Lazarus, T. Luce, R. Prater, Nuclear Fusion 31, 2031 (1991) [3] G. Jackson, J. Degrassie, C. Moeller, R. Prater, Nuclear Fusion 47, 257 (2007) [4] Y. Liang, N. Wang, Y. Ding et al., Nuclear Fusion 59, 112016 (2019) [5] D. Farina, Nuclear Fusion 58, 066012 (2018) [6] J. Sinha, P. de Vries, M. Walker, et al., Nuclear Fusion 62, 066013 (2022)

Contact Us: junlizhang@hust.edu.cn

Address: School of Electrical and Electronic Engineering. Luoyu Rd. #1037, Huazhong University of Science and Technology, Wuhan 430074, China

