

21st Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) 20-24 June 2022 – ITER Organization, Saint-Paul-lez-Durance, France

Electron Cyclotron Current Drive Efficiency in the STEP Device

L. Figini^{1*}, S.J. Freethy², M. Henderson², S. Marsden², K.K. Kirov², R. Sharma²

¹Istituto per la Scienza e Tecnologia dei Plasmi, ISTP-CNR, 20125 Milano, Italy ²UKAEA, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom

* email: lorenzo.figini@istp.cnr.it

INTRODUCTION

- The UK's Spherical Tokamak for Energy Production (STEP) design program aims at demonstrating the ability to achieve a net electrical gain from fusion reactions in a magnetically confined plasma under reactor relevant conditions.
- A key aspect is the maximization of the plug-to-plasma Current Drive (CD) efficiency of the auxiliary Heating and Current Drive (H&CD) systems.
- The STEP program has recently decided to rely uniquely on mm-wave H&CD actuators, namely Electron Cyclotron (EC) and Electron Bernstein Waves (EBW) [1,2].

This work outlines the studies done so far: (i) to assess the H&CD capabilities of EC waves in STEP; (ii) to identify the optimal EC beam injection conditions which maximize the CD efficiency; and (iii) to verify their robustness against changes of the plasma parameters and/or changes of the launch conditions.

MAXIMAL ECCD EFFICIENCY

Different SPRs compared via normalized ECCD efficiency [4]

$$I_{CD} = 3.27 \frac{R_m n_{19}}{T_{keV}} \frac{I_A}{P_W}$$

- $0.25 \le \zeta_{CD} \le 0.4$ at $\rho < 0.5$ for all SPRs
- $\zeta_{CD} \approx 0.5$ marginally achievable at $\rho \approx 0.6$ in SPR-45, assuming Z_{eff} =1.8. Lower ζ_{CD} in the latest v3 iteration due to higher Z_{eff} =2.5
- OM injection is always preferred up to $\rho < 0.7$
- Far off-axis (ρ > 0.8) XM shows large efficiency (ζ_{CD} > 0.8 in SPR-14) but launch condition is not robust (CD via trapped electrons at down-shifted first harmonic close to cut-off condition)
- n=2 resonance preferred only at ρ < 0.3÷0.5 in high n_e concepts (SPR-39, SPR-45)
- Optimal LP elevation $|z_{IP}|$ increases with incr. ρ

	5.50	5.2	TO	19	1.4	1.0
45 (v1)	3.60	3.2	20	17	1.9	1.8
45 (v3)	3.60	3.2	20	18	2.0	2.5
14	4.73	4.0	21	22	0.9	1.7

EC LAUNCH PARAMETRIC SCAN -

Extensive parametric analysis ($\approx 10^7$ runs per SPR) via quasi-optical beam-tracing code GRAY [3]

- 9-16 Different **launch points** (LP)
- 2 possible **polarizations** (OM, XM)
- **frequency** scan from f_L up to >3 f_{ce}
- wide range of **poloidal** (α) and **toroidal** (β) launch angles

Assessment of

- max(I_{CD}) & optimal launches vs ρ
- launch angles and frequency tolerances

SENSITIVITY TO DENSITY

Motivation of the analysis:

- a. Assess sensitivity to variations of plasma parameters (robustness of launch conditions)
- b. Investigate possibility to operate at higher ne (beneficial for EBW)

0.6

0.8

Preliminary results:

- Quantified changes in J_{CD} а. location and ζ_{CD} for the nominal optimal launches
- b. Performed re-optimization at ±10%, ±25% n_e
 - ζ_{CD} mostly affected around $\rho \approx 0.6$ (n=1 to n=2 transition)

CONCLUSIONS

0.2

0.4

- A maximum normalized ECCD efficiency 0.25 < ζ_{CD} < 0.4 was typically found at ρ < 0.6 in all the SPRs assessed in this study, via OM absorption at the n=1 or n=2 harmonics.
- Far off-axis ($\rho > 0.8$), $\zeta_{CD} > 0.5$ can be achieved via XM absorption at the down-shifted first harmonic resonance, but with a narrow operational space
- Maximization of ECCD over the whole radial range requires LPs at different elevations $|z_{IP}|$
- High n_e limits the exploitation of n=1 resonance at mid-radius. Otherwise, the maximum achievable ζ_{CD} is fairly insensitive to n_e variations (meaning max(I_{CD})/P $\propto T_e/n_e$)
- The trade-off between maximum performance and reliable operation needs a careful evaluation before a final choice is made for the optimal EC launch configuration

ACKNOWLEDGEMENTS

This work has been carried out under a contract (PO #2053810) signed between UKAEA and **ISTP-CNR**

REFERENCES

[1] S. Freethy, this workshop [2] T. Wilson, this workshop

[3] D. Farina, Fusion Sci. Technol. **52** (2007) 154 [4] T.C. Luce, et al., Phys. Rev. Lett. 83 (1999) 4550