We measure deposition profiles 1.5 to 3.5x wider than TORAY predictions in six DIII-D discharges

SCIENCE FOR FUTURE ENERGY

• ECH is responsible for many tasks where its

- narrow deposition width is crucial
- The standard for determining the deposition profile is beam/ray-tracing
- Several studies have shown discrepancies between beam/ray tracing and measured profiles [1,2]
- We aim to measure this discrepancy using new, advanced methods

Method

- We obtain the results by:
- Analyzing temperature fluctuations[®] resulting from a modulated ECH source[®]
- Applying advanced filtering^C and data processing techniques^D [3,4]
- Using the well-know break-in-slope (BIS) method [5] to estimate the deposition profile

source signal *U(t)*, approximately a square wave

• Using three different state-of-the-art estimation methods (MLE, FDLS, FF) [6,7,8] to compare against BIS

Fig. 2: Measured ECH deposition profiles for six DIII-D discharges using 4 different techniques, compared against TORAY estimates

Fig. 1: Data processing

Rectangular

window

AB

FFT

Modulated ECH power

BIS

iFFT

electron temperature

- We can measure the deposition profile
- We measure broadening between
 1.0 3.5 times over TORAY
 predictions
- This may have implications for ITER in e.g. NTM control
- We have not investigated what causes the broadening

Tab. 1: An overview of the different estimation methods applied in this work

	Method			
Criterium	BIS	MLE	FDLS	FF
Includes transport	×	✓	\checkmark	✓
Analysis domain	Time	Frequency	Frequency	Frequency
Perturbation shape	Square/ step	Any	Any	Any
Optimization type	-	Maximum likelihood	Ordinary LS	Nonlinear LS
Optimization method	-	Gradient- based	Direct evaluation	Gradient- based
$\int dx$ (data)?	×	×	×	\checkmark
$\frac{d}{dx}$ (data)?	×	×	\checkmark	\checkmark

J. H. Slief¹, R. J. R. van Kampen^{1,2}, M. W. Brookman³, J. van Dijk², E. Westerhof¹ and M. van Berkel¹

References

[1] K. K. Kirov *et al.* (2002) *Plasma Phys. Control. Fusion* **44** 2583
[2] M. W. Brookman (2021) *Phys. Plasmas* **28** 042507
[3] R. Pintelon *et al.* (2010) *Mech. Syst. Signal Process.* **24** 573-595
[4] R. Pintelon *et al.* (2010) *Mech. Syst. Signal Process.* **24** 596-616
[5] E. A. Lerche and D. van Eester (2008) *Plasma Phys. Control. Fus.* **50** 035003
[6] M. van Berkel *et al.* (2014) *Automatica* **50** 2113-2119
[7] R. J. R. van Kampen *et al.* (2021) *IEEE Contr. Syst. Lett.* **5** 1681-1686
[8] J. H. Slief *et al.* (2022) *Phys. Plasmas* **29** 010703

¹Dutch Institute For Fundamental Energy Research, Eindhoven, the Netherlands ²Eindhoven University of Technology, Eindhoven, the Netherlands ³General Atomics, San Diego, United States of America E-mail address: j.h.slief@differ.nl

Acknowledgements

 T_{e} measurements (ECE)

FDLS, FF

This work has received funding from the Euratom research and training programme under grant agreement No 633053. Data used in this publication was generated in experiments funded by the US Department of Energy under DE-FC02-04ER54698.

