21st JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION (ECE) AND ELECTRON CYCLOTRON RESONANCE HEATING (ECRH), 20 - 24 June 2022, ITER Organization

Evaluation of the O-X mode conversion rate of the finite width wave in two dimensional systems

H. Igami^A, A. Fukuyama ^B, K. Nagasaki ^C ^A*NIFS*, ^B*GSE*, *Kyoto Univ.*, ^C*IAE*, *Kyoto Univ.*

Contents

- Background and Motivation
- Configuration of the 2D wave optical calculation with using TASK/WF2D
- Calculation results
- Summary

Background and Motivation Mode conversions across the evanescent region

P3

- For ECRH in the "over-dense" plasma, the electrostatic EBW should be excited via the mode conversion process from the SX wave at the UHR
- Waves launched from the low magnetic field side transmit the evanescent region to couple with the SX-mode
- The ray-tracing cannot treat the propagation across the evanescent region
- Wave optical full wave analysis is required

Broadening of the launched finite width beam affects the O-X mode conversion process

P4 Plasma and Fusion Research, Volume 11, 2403098(2016)

- In 2D configuration, a finite width electromagnetic wave launched from the waveguide at $\vartheta_{inj} = \vartheta_{opt} =$ $\operatorname{arccos}(N_{//opt})$ is **not fully mode converted** to the SX mode
- At the edge of the launched beam, $\vartheta_{inj} = \vartheta_{opt} \pm 1.5^{\circ}$ in this case
- In this study, we've performed 2D wave optical full wave analyses to provide a guideline for designing the launching beam condition for ECRH by EBW

Configuration of the 2D calculation

Calculation of the electric field at (x_{ant}, y_{ant})

1. Coordinate transformation $(x, y, z) \Rightarrow (x_d, y_d, z_d)$

$$\begin{array}{cccc}
\mathbf{k}_{in} & & \left(N_{x}, N_{y}, N_{z}\right) \Rightarrow \left(N_{xd}, N_{yd}, N_{zd}\right) \\
\mathbf{e}_{zd} \parallel \vec{B} & \vec{e}_{zd} \approx \vec{e}_{yd} \\
\mathbf{e}_{yd} \bullet & \mathbf{e}_{xd} & \vec{e}_{yd} = \vec{N} \times \vec{e}_{zd} / |\vec{N} \times \vec{e}_{zd}|
\end{array}$$

2. Solving the Maxwell equations $\vec{N}_d \times (\vec{N}_d \times \vec{E}_d) + \vec{\varepsilon} \cdot \vec{E}_d = 0 \quad \vec{\varepsilon} = \begin{pmatrix} S & -iD & 0\\ iD & S & 0\\ 0 & 0 & P \end{pmatrix} : \text{Cold dielectric tensor}$ $\begin{pmatrix} S - (N_{yd}^2 + N_{zd}^2) & -iD + N_{xd}N_{yd} & N_{zd}N_{xd} \\ iD + N_{xd}N_{yd} & S - (N_{zd}^2 + N_{xd}^2) & 0 \\ N_{zd}N_{xd} & N_{yd}N_{xz} & P - (N_{xd}^2 + N_{yd}^2) \end{pmatrix} \begin{pmatrix} E_{xd} \\ E_{yd} \\ E_{zd} \end{pmatrix} = 0$

3. Coordinate transformation $(E_{xd}, E_{yd}, E_{zd}) \Rightarrow (E_x, E_y, E_z)$

Calculation Parameters

- Frequency : $f = \omega/2\pi = 28GHz$
- Waist size : $w_0 = 0.0373 \text{m} (=3.48 \lambda_0)$
- Mesh size = 0.25mm (~ λ_0 /40)
- thickness of the absorber : $W_d = 0.025m$
- Permittivity in the absorber : $\epsilon_{damp} = \epsilon \times 2$
- Normalized collision frequency : v_e/ω = 0.001, v_p/ω = 0.001, v_{abs}/ω = 0.2

Intel Xeon Silver 4216 CPU @ 2.10GHz, 16C/32T x 2 Memory: 768GB Number of element : 12096000 (typical)

CPU time : 3196.55 sec (for FEM calculation, typical)

Density scale-length at the plasma cutoff,

 $\begin{array}{l} \mathsf{L_n}{=}7.5^*\,\lambda_0\;(\lambda_0{:}\;\text{vacuum wavelength})\\ \text{Constant magnetic field}:|\mathsf{B}|=0.4\mathsf{T},\\ (\vec{B}\;\mid\mid \hat{z}\;)\;\omega_{\mathrm{ce}}/\omega=0.4 \end{array}$

An example of the calculation Launching of the Gaussian like beam with $N_{//} = N_{// opt} (\theta_{// opt} = 57.7 deg.)$

- Cold dielectric tensor with weak collisional damping for UH resonant absorption
- The artificial dielectric tensor is adopted in FEM calculation inside the artificial "absorption wall" to make the wave number gradually diverge to cause the resonant absorption like in the UHR
- P8 ✓ The "absorption wall" has an aperture around the launched wave

Based on the cold plasma resonant absorption model T_{OX} can be calculated from the outputs of TASK/WF2D

From the collisionally absorbed power

$$P_{abs} = \vec{j}^* \cdot \vec{E} = \left(\sigma \cdot \vec{E}\right)^* \cdot \vec{E}$$

$$T_{OX} = \frac{\sum_{X=0}^{X=Xant} P_{abs_e}}{\sum_{X=0}^{X=Xant} (P_{abs_e} + P_{abs_i} + P_{abs_wall})}$$

 T_{OX} : O-X mode conversion rate

From Poynting fluxes

$$T_{OX} = 1 - \sum_{Y=0}^{Y=Y_{max}} |\vec{P}_{X_ref}| / |\vec{P}_{X_in}| \qquad \vec{P} = Re(\vec{E}e^{-i\omega t}) \times Re(\vec{B}e^{-i\omega t}) / u_0$$

time average

$$\langle E_i \partial E_j \rangle = \langle E_i^* \partial E_j^* \rangle = 0 \qquad \qquad = \frac{1}{4\omega u_0} \begin{bmatrix} \{E_y^*(\partial_x E_y - \partial_y E_x) - E_z^*(-\partial_x E_z)\} - c.c. \\ \{E_x^*(\partial_y E_z) - E_x^*(\partial_x E_y - \partial_y E_x)\} - c.c. \\ \{E_x^*(-\partial_x E_z) - E_y^*(\partial_y E_z)\} - c.c. \end{bmatrix}$$

Poynting fluxes of various launching angle cases

✓ The incident Gaussian like beam is focused on the plasma cutoff for each case $w_z = w_0 \sqrt{1 + (z/z_r)^2}$

$$E(x_{bnd} y) = E(x_{bnd}, y_{cnt}) \frac{w_0}{w_z} exp \left\{ -\left(\frac{r_b}{w_z}\right)^2 - i|k_{in}| \left(z_p + \frac{r_b^2}{2R_c}\right) + i\zeta \right\} \quad w_z = w_0 \sqrt{1 + (2/2_r)}$$

$$z_r = \left(\frac{\omega}{2c}\right) w_0^2 \quad z_p = (y - y_{cnt}) \cos \theta$$

Calculation results

T_{ox} estimated for various propagation angles

 T_{ox} is less than plane wave theory at $\theta = \theta_{//opt}$, greater than $\theta \neq \theta_{//opt}$

P11

Propagation of waves of a smaller waist size $w_0 = 0.017m$ (=1.59 λ_0)

 $\theta = \theta_{//opt} : T_{OX} \text{ decreases}$ $\theta = \theta_{//opt} \pm 10 \text{ deg.} : T_{OX} \text{ increases}$

T_{ox} estimated for various beam waist sizes for various propagation angles

With increase of the beam waist size w_0 , numerically calculated T_{ox} with taking $N_{//}=N_{//opt}$, approaches 1

P13

The effect of the beam curvature radius R_c on the T_{ox} is investigated with changing the beam focal point

- ✓ T_{OX} remains to be constant for the same beam waist size w_0 since the N_{//} Fourier spectrum is conserved in the slab plasma in the uniform magnetic field.
- ✓ With introducing the magnetic shear, T_{OX} can change because the $\,N_{/\!/}\,$ spectrum can change during the wave propagation

$$L_n=7.5^* \ \lambda_0$$
 , W_0 / λ_0 =1.59

 z_{PC} : Distance between the beam focal point ant the plasma cutoff

- ✓ The phase and amplitude along the y-axis vary with the propagation
- \checkmark On the other hand, the N_{//} Fourier spectrum is conserved

 $L_n=7.5^* \lambda_0$, $W_0 / \lambda_0 = 5.006$

✓ With adopting a larger beam waist size w_0 , the spreading of the N_{//} Fourier spectrum can be reduced to obtain higher T_{OX} T_{ox} with change of the beam waist size w_0 for the case of $\omega_{ce}/\omega = 0.4$ and 0.8

- ✓ w_0/λ_0 > 6 is required for T_{ox} > 90 % with L_n/ λ_0 =7.5
- ✓ Higher T_{ox} can be obtained with lower ω_{ce}/ω for the small waist size beam

Estimation of T_{ox} with change of the density gradient

T_{ox} decreases as increase of L_n , however, it converges with 80% for $L_n/\lambda_0 > 30$

Decrement of Tox in low L_n/λ_0 region might cause by transmission of the X-mode toward the lower density side after the O-X mode conversion as the 1D calculation suggested

H. Igami et al., Plasma Phys. Control. Fusion 48 (2006) 573-598

Summary : purpose and method

- To provide a guideline for designing the launching beam for ECRH by EBW, wave optical analyses were performed for various normalized density scale lengths and beam parameters with using of TASK/WF2D code
- T_{OX} is estimated based on the cold plasma UH resonant absorption model in slab plasmas in the uniform magnetic field

Summary : results and future works

- > The beam waist size w_0 affects T_{ox}
- > With adopting sufficiently large w_0/λ_0 , higher T_{OX} can be obtained so that the spreading of the N_{//} Fourier spectrum can be reduced
 - consistent with the previous 2D numerical analysis (Y. Oka, et al., COMSOL Conference 2020, K. Nagasaki et al., EPS 2020)
- > Though T_{ox} decreases as increase of L_n, it converges with 80 % for L_n/λ_0 > 30 with adopting sufficiently large w_0/λ_0 ($\gtrsim 5$)

Future works

- Effect of the magnetic shear on for finite width waves
- Propagation characteristics during the X-B mode with introducing integral from of dielectric tensor