Evaluation of the O－X mode conversion rate of the finite width wave in two dimensional systems

H．Igami ${ }^{\text {A }}$ ，A．Fukuyama ${ }^{\text {B }}$ ，K．Nagasaki ${ }^{\text {C }}$ ${ }^{\mathrm{A}}$ NIFS，${ }^{\mathrm{B}}$ GSE，Kyoto Univ．，${ }^{\mathrm{C}}$ IAE，Kyoto Univ．

Contents

- Background and Motivation
- Configuration of the 2D wave optical calculation with using TASK/WF2D
- Calculation results
- Summary

Background and Motivation Mode conversions across the evanescent region

$>$ For ECRH in the "over-dense" plasma, the electrostatic EBW should be excited via the mode conversion process from the SX wave at the UHR
$>$ Waves launched from the low magnetic field side transmit the evanescent region to couple with the SX-mode
$>$ The ray-tracing cannot treat the propagation across the evanescent region
$>$ Wave optical full wave analysis is required

Broadening of the launched finite width beam affects the O-X mode conversion process

H. Igami. et al.

Plasma and Fusion Research, Volume 11, 2403098(2016)

- In 2D configuration, a finite width electromagnetic wave launched from the waveguide at $\vartheta_{\text {inj }}=\vartheta_{\text {opt }}=$ $\arccos \left(N_{/ / \text {opt }}\right)$ is not fully mode converted to the SX mode
- At the edge of the launched beam, $\vartheta_{\text {inj }}=\vartheta_{\text {opt }} \pm 1.5^{\circ}$ in this case
$>$ In this study, we've performed 2D wave optical full wave analyses to provide a guideline for designing the launching beam condition for ECRH by EBW

Configuration of the 2D calculation

Calculation of the electric field at $\left(x_{a n t}, y_{a n t}\right)$

1. Coordinate transformation $(x, y, z) \Longrightarrow\left(x_{d}, y_{d}, z_{d}\right)$

$$
\begin{aligned}
& \left(N_{x}, N_{y}, N_{z}\right) \Longrightarrow\left(N_{x d}, N_{y d}, N_{z d}\right) \\
& \vec{e}_{z d} \| \vec{B} \quad \vec{e}_{x d}=\vec{e}_{z d} \times \vec{e}_{y d} \\
& \vec{e}_{y d}=\vec{N} \times \vec{e}_{z d} /\left|\vec{N} \times \vec{e}_{z d}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Solving the Maxwell equations } \\
& \vec{N}_{d} \times\left(\vec{N}_{d} \times \vec{E}_{d}\right)+\overleftrightarrow{\varepsilon} \cdot \vec{E}_{d}=0 \quad \stackrel{\leftrightarrow}{\varepsilon}=\left(\begin{array}{ccc}
S & -i D & 0 \\
i D & S & 0 \\
0 & 0 & P
\end{array}\right): \text { Cold dielectric tensor } \\
& \left(\begin{array}{ccc}
S-\left(N_{y d}^{2}+N_{z d}^{2}\right) & -i D+N_{x d} N_{y d} & N_{z d} N_{x d} \\
i D+N_{x d} N_{y d} & S-\left(N_{z d}^{2}+N_{x d}^{2}\right) & 0 \\
N_{z d} N_{x d} & N_{y d} N_{x z} & P-\left(N_{x d}^{2}+N_{y d}^{2}\right)
\end{array}\right)\left(\begin{array}{c}
E_{x d} \\
E_{y d} \\
E_{z d}
\end{array}\right)=0
\end{aligned}
$$

3. Coordinate transformation $\left(E_{x d}, E_{y d}, E_{z d}\right) \Longrightarrow\left(E_{x}, E_{y}, E_{z}\right)$

Calculation Parameters

- Frequency : $f=\omega / 2 \pi=28 \mathrm{GHz}$
- Waist size : $w_{0}=0.0373 \mathrm{~m}\left(=3.48 \lambda_{0}\right)$
- Mesh size $=0.25 \mathrm{~mm}\left(\sim \lambda_{0} / 40\right)$
- thickness of the absorber : $w_{d}=$ 0.025 m
- Permittivity in the absorber : $\varepsilon_{\text {damp }}=$ $\varepsilon \times 2$
- Normalized collision frequency : v_{e} / ω

$$
=0.001, v_{\mathrm{p}} / \omega=0.001, v_{\mathrm{abs}} / \omega=0.2
$$

Intel Xeon Silver 4216 CPU @ 2.10GHz, 16C/32T x 2 Memory: 768GB
Number of element : 12096000 (typical)
CPU time : 3196.55 sec (for FEM calculation, typical)

Density scale-length at the plasma cutoff,
$\mathrm{L}_{\mathrm{n}}=7.5^{*} \lambda_{0}$ (λ_{0} : vacuum wavelength)
Constant magnetic field : $|\mathrm{B}|=0.4 \mathrm{~T}$,
$(\vec{B} \| \hat{z}) \omega_{\mathrm{ce}} / \omega=0.4$

An example of the calculation

Launching of the Gaussian like beam with $\mathrm{N}_{/ /}=\mathrm{N}_{/ / \text {opt }}\left(\theta_{/ / \text {opt }}=57.7 \mathrm{deg}\right.$.)

\checkmark Cold dielectric tensor with weak collisional damping for UH resonant absorption
\checkmark The artificial dielectric tensor is adopted in FEM calculation inside the artificial "absorption wall" to make the wave number gradually diverge to cause the resonant absorption like in the UHR
P8 \checkmark The "absorption wall" has an aperture around the launched wave

Based on the cold plasma resonant absorption model $T_{O X}$ can be calculated from the outputs of TASK/WF2D

From the collisionally absorbed power

$$
\begin{aligned}
& P_{\text {abs }}=\vec{J}^{*} \cdot \vec{E}=(\sigma \cdot \vec{E})^{*} \cdot \vec{E} \\
& T_{O X}=\frac{\sum_{X=0}^{X=X a n t} P_{\text {abs_e }}}{\sum_{X=0}^{X=X a n t}\left(P_{\text {abs_e }}+P_{\text {abs_i }}+P_{\text {abs_wall }}\right)}
\end{aligned}
$$

From Poynting fluxes

$$
T_{O X}=1-\sum_{Y=0}^{Y=Y_{\max }}\left|\vec{P}_{X_{-} r e f}\right| /\left|\vec{P}_{X_{-} i n}\right|
$$

$$
\begin{aligned}
\vec{P} & =\operatorname{Re}\left(\vec{E} e^{-i \omega t}\right) \times \operatorname{Re}\left(\vec{B} e^{-i \omega t}\right) / u_{0} \\
& =\operatorname{Re}\left(\vec{E} e^{-i \omega t}\right) \times \operatorname{Re}\left(\frac{\left(\nabla \times \vec{E} e^{-i \omega t}\right)}{i \omega u_{0}}\right)
\end{aligned}
$$

time average
$\left\langle E_{i} \partial E_{j}\right\rangle=\left\langle E_{i}^{*} \partial E_{j}^{*}\right\rangle=0$

$$
=\frac{1}{4 \omega u_{0}}
$$

$$
\left[\begin{array}{c}
\left\{E_{y}^{*}\left(\partial_{x} E_{y}-\partial_{y} E_{x}\right)-E_{z}^{*}\left(-\partial_{x} E_{z}\right)\right\}-c . c . \\
\left\{E_{z}^{*}\left(\partial_{y} E_{z}\right)-E_{x}^{*}\left(\partial_{x} E_{y}-\partial_{y} E_{x}\right)\right\}-c . c . \\
\left\{E_{x}^{*}\left(-\partial_{x} E_{z}\right)-E_{y}^{*}\left(\partial_{y} E_{z}\right)\right\}-c . c .
\end{array}\right]
$$

Poynting fluxes of various launching angle cases

$T_{O X}=0.15$
$\theta=\theta_{/ / \text {opt }}+5 \mathrm{deg}$.

$$
\theta=\theta_{/ / \mathrm{opt}}
$$

$$
\theta=\theta_{/ / \text {opt }}-5 \mathrm{deg} .
$$

$$
\theta=\theta_{/ / \text {opt }}-10 \mathrm{deg} .
$$

\checkmark The incident Gaussian like beam is focused on the plasma cutoff for each case

$$
E\left(x_{b n d} y\right)=E\left(x_{b n d}, y_{c n t}\right) \frac{w_{0}}{w_{z}} \exp \left\{-\left(\frac{r_{b}}{w_{z}}\right)^{2}-i\left|k_{i n}\right|\left(z_{p}+\frac{r_{b}^{2}}{2 R_{c}}\right)+i \zeta\right\} \begin{aligned}
& w_{z}=w_{0} \sqrt{1+\left(z / z_{r}\right)^{2}} \\
& z_{r}=\left(\frac{\omega}{2 c}\right) w_{0}^{2} z_{p}=\left(y-y_{c n t}\right) \cos \theta
\end{aligned}
$$

Calculation results

$\mathrm{T}_{\text {ox }}$ estimated for various propagation angles

$\mathrm{T}_{\text {ox }}$ is less than plane wave theory at $\theta=\theta_{/ / \text {opt }}$, greater than $\theta \neq \theta_{/ / \text {opt }}$

plane wave theory: $\quad \mathrm{T}_{\mathrm{OX}}=\exp \left\{-\pi \mathrm{k}_{0} \mathrm{~L}_{\mathrm{n}}(\mathrm{Y} / 2)^{1 / 2}\left[2(1+\mathrm{Y})\left(\mathrm{N}_{/ /}-\mathrm{N}_{/ / \mathrm{opt}}\right)^{2}+\mathrm{N}_{\mathrm{y}}{ }^{2}\right]\right\}$,

Propagation of waves of a smaller waist size $w_{0}=0.017 \mathrm{~m}$ $\left(=1.59 \lambda_{0}\right)$

$T_{O X}=0.226$

$T_{O X}=0.454$
$\theta=\theta_{/ / \text {opt }}$

$$
T_{O X}=0.576
$$

$\theta=\theta_{/ / \text {opt }}-5 \mathrm{deg}$.

$T_{O X}=0.471$
$\theta=\theta_{/ / \text {opt }}-10 \mathrm{deg}$.

$$
T_{O X}=0.267
$$

$\theta=\theta_{/ / \text {opt }}: T_{O X}$ decreases
$\theta=\theta_{/ / \text {opt }} \pm 10$ deg. : $T_{O X}$ increases
$T_{o x}$ estimated for various beam waist sizes for various propagation angles

With increase of the beam waist size w_{0}, numerically calculated $\mathrm{T}_{\text {ox }}$ with taking $\mathrm{N}_{/ /}=\mathrm{N}_{/ / \text {opt }}$, approaches 1

-	$w_{0} / \lambda_{0}=1.588$
$\boldsymbol{\Delta}$	$w_{0} / \lambda_{0}=3.484$
\square	$w_{0} / \lambda_{0}=5.006$
\bullet	$w_{0} / \lambda_{0}=10.00$
--	Plane wave theory

The effect of the beam curvature radius R_{c} on the $T_{o x}$ is investigated with changing the beam focal point

$\checkmark \mathrm{T}_{\text {OX }}$ remains to be constant for the same beam waist size w_{0} since the $\mathrm{N}_{/ /}$ Fourier spectrum is conserved in the slab plasma in the uniform magnetic field. spectrum can change during the wave propagation

$$
\mathrm{L}_{\mathrm{n}}=7.5^{*} \lambda_{0}, \mathrm{w}_{0} / \lambda_{0}=1.59
$$

$Z_{P C}$: Distance between the beam focal point ant the plasma cutoff

\checkmark The phase and amplitude along the y-axis vary with the propagation
\checkmark On the other hand, the $\mathrm{N}_{/ /}$Fourier spectrum is conserved

$$
\mathrm{L}_{\mathrm{n}}=7.5^{*} \lambda_{0}, \mathrm{w}_{0} / \lambda_{0}=5.006
$$

\checkmark With adopting a larger beam waist size w_{0}, the spreading of the $\mathrm{N}_{/ /}$ Fourier spectrum can be reduced to obtain higher $\mathrm{T}_{\text {Ox }}$
$T_{o x}$ with change of the beam waist size w_{0} for the case of $\omega_{\mathrm{ce}} / \omega=0.4$ and 0.8

$\checkmark w_{0} / \lambda_{0}>6$ is required for $\mathrm{T}_{\text {ox }}>90 \%$ with $\mathrm{L}_{\mathrm{n}} / \lambda_{0}$ =7.5
\checkmark Higher T_{ox} can be obtained with lower $\omega_{\mathrm{ce}} / \omega$ for the small waist size beam

Estimation of T_{ox} with change of the density gradient

$\mathrm{T}_{\text {ox }}$ decreases as increase of L_{n}, however, it converges with 80%

 for $L_{n} / \lambda_{0}>30$

Decrement of Tox in low L_{n} / λ_{0} region might cause by transmission of the X-mode toward the lower density side after the $0-X$ mode conversion as the 1D calculation suggested

Summary : purpose and method

$>$ To provide a guideline for designing the launching beam for ECRH by EBW, wave optical analyses were performed for various normalized density scale lengths and beam parameters with using of TASK/WF2D code
$>\mathrm{T}_{\mathrm{OX}}$ is estimated based on the cold plasma UH resonant absorption model in slab plasmas in the uniform magnetic field

Summary : results and future works

$>$ The beam waist size w_{0} affects T_{ox}
$>$ With adopting sufficiently large w_{0} / λ_{0}, higher $T_{0 x}$ can be obtained so that the spreading of the $\mathbf{N}_{/ /}$Fourier spectrum can be reduced

- consistent with the previous 2D numerical analysis (Y. Oka, et al., COMSOL Conference 2020, K. Nagasaki et al., EPS 2020)
$>$ Though T_{ox} decreases as increase of L_{n}, it converges with 80% for $\mathrm{L}_{\mathrm{n}} / \lambda_{0}>30$ with adopting sufficiently large $\mathrm{w}_{0} / \lambda_{0}(\gtrsim 5)$

Future works

$>$ Effect of the magnetic shear on for finite width waves
$>$ Propagation characteristics during the X-B mode with introducing integral from of dielectric tensor

