

Current status of ECE system on EAST tokamak

Hailin Zhao¹, Ang Ti¹, Tianfu Zhou¹, Zeying Zhu¹, Yong Liu^{2,1}, Bili Ling¹, Qing Zang¹, Juan Huang¹ and Xianzu Gong¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

²ITER Organization, Route de Vinon sur Verdon, 13067, St Paul Lez Durance, France

Presented at 21st EC meeting, 2022-6-22

- ECE diagnostic introduction
- EAST ECE Current status
- Future plan
- Summary

ECE diagnostic introduction

ECE frequency:

$$\omega = n \frac{eB}{m_{e0}} \sqrt{1 - \beta^2} + k_{//}v_{//} = n \frac{eB}{m_{e0}} \frac{\sqrt{1 - \beta^2}}{1 - \beta_{//}cos\theta}$$

Horizontal Measurement:

 $\theta \neq 90^{\circ}$: Oblique ECE

 $\theta = 90^{\circ}$: Conventional ECE

 When plasma is optical thick and thermal equilibrium, ECE intensity can be regarded as blackbody radiation

$$I_B(\omega, T) \simeq \frac{\omega^2 T}{8\pi^3 c^2}$$

From ECE spectrum, Te profile can be obtained.

- ECE diagnostic introduction
- EAST ECE Current status
- Future plan
- Summary

EAST ECE system overview

- ✓ Conventional ECE system (port P) :
- **♦** Te profile measurement, including 56 channel Heterodyne radiometer Michelson Interferometer
- ✓ Correlation ECE (CECE) system (Port C)
- **♦** Small scale Te fluctuation measurement
- √ High resolution ECE system (Port F)
- **♦** Magnetic island precise positioning

Conventional ECE system in 2020

- ✓ Common quasi-optical antenna and transmission line (TL) (~45 m)
- ✓ Independent in-situ absolute intensity calibration

	Frequency Coverage (GHz)	Spectral resolution (GHz)	Temporal resolution
Michelson interferometer	80-500	2.8	30 ms
56-channel Radiometer	97-168	0.2/0.5	2.5 μs

Michelson

Port P

32 channel Heterodyne Radiometer system

Major radius (m)

In collaboration with UC Davis

EAST heating upgrade in 2021

- NBI: counter-current to co-current, one moved from port F to port D, total beam power ~5 MW.
- LHW: new 2.45 GHz PAM antenna, moved from port N to port B, 6 MW (2.45 GHz and 4.6 GHz).
- ICRF: one moved from port B to port N, in total 3 MW.
- ECH: 3 gyrotrons, 140 GHz, in total 1.75 MW.

old topology new topology

NBI system

LHW system

ICRF system

ECH system

ECE QO redesigned in 2021

- Redesigned two QO systems, for ECE and future oblique ECE.
- The added oblique ECE QO can be used for future studies of high-energy electron characteristics generated by LHW.
- The transmission waveguide rearranges the direction.

two QO systems

QO front view

Oblique ECE

The beam waist in EAST

CECE upgraded to 16 channels

- Moved From Port G to port C
- A 8-channel CECE radiometer system operated routinely since 2018.
- Integrated QO with DBS system, 8 YIG filters.
- In 2021, add another RF band and another 8 channels with fixed frequency bandpass filters.
- The system now covers 106 GHz to 132 GHz, so can work in wide B_T range.

CECE system

- Flexible radial coverage & radial separation
- k_{θ} < 1.85 cm⁻¹, k_{r} < 4.19 cm⁻¹
- Interesting phenomenon have been observed

$$\left(rac{ ilde{T}_e}{T_e}
ight)_{ECE} = \sqrt{rac{2\Delta f_{video}}{f_{IF}}}$$

$$\left(\frac{\tilde{T}_e}{T_e}\right)_{CECE} = \sqrt{\frac{1}{\sqrt{N_s}} \frac{2\Delta f_{video}}{f_{IF}}}$$

FED 149 (2019) 111336

High resolution ECE radiometer in port F

- ➤ LO and IF filter Frequency is selected according to typical 3/2,2/1 mode position.
- ➤ Curvature window and lens antenna are designed to improve the poloidal optical collection capability (poloidal resolution ~ 4 cm)
- Narrow band IF filter is used to reduce radial measurement region and channel spacing. (Bandwidth~200 MHz /Interval~600 MHz)

- ECE diagnostic introduction
- EAST ECE current status
- Future plan
- Summary

L_{Te} measurement system in the pedestal region

- Conventional method: fit T_e profile to get L_{Te}
- The L_{Te} measurement system:

$$ightharpoonup
abla T = rac{\Delta T}{\Delta R}, I_{ECE} = \mathbf{C} \times T, \Delta T \propto \Delta I_{ECE}, \Delta R \propto -\Delta f$$

- ➤ Change frequency a little, ECE intensity change can derive L_{Te}.
- > Not rely on system absolute calibration.

- □ Scan LO frequency to measure L_{Te} directly
- ☐ Change IF YIG filter frequency to change the position.
- Time resolution: ~ 10 ms
- Radial Position: r/a = 0.8 0.95

ECE diagnostic for low B_T

- \square Low B_T is an attractive regime for low q95,high β_N .
- □ Now ECE on EAST can not measure T_e profile for B_T smaller than 1.8 T.
- □ Plan to build a 16 channel ECE heterodyne system
- > Frequency range 81 to 96 GHz, 1 GHz separation per channel.

Oblique ECE

- □ The capability of oblique ECE diagnostic is evaluated by using synthetic diagnostic technique.
- ➤ Including high energy electron fraction, position, width, energy et al.

- ECE diagnostic introduction
- EAST ECE current status
- Future plan
- Summary

Summary

- ✓ A series of conventional ECE heterodyne radiometer systems has been routinely operated on EAST, which can provide Te profile measurement and MHD analysis.
- ✓ CECE system has been upgraded to 16 channels and the frequency range can cover wider B_T regime.
- ✓ High resolution ECE is still on its way to precise position the MHD modes.

- □ Pedestal L_{Te} measurement system will be available next year.
- □ A 16 channel radiometer is planned for low filed measurement.

Thank you for your attention!!

