Application of a Quasioptical code PARADE: modeling of ECRH, ECCD and ECE diagnostics in toroidal fusion devices

Kota Yanagihara ${ }^{1)}$ and Shin Kubo ${ }^{2)}$
${ }^{1)}$ Naka Fusion Institute,
National Institute for Quantum Science and Technology (QST)
${ }^{2)}$ Chubu University

PARADE for ECRH，ECCD，and ECE modeling

Various improvements on ECRH，ECCD，and ECE modeling by Quasioptical code PARADE with relativistic effects in JT－60SA and JA－ DEMO are presented today．
In order to predict EC applications in reasonable costs with high accuracy， We applied，

〈1〉 Quasioptical beam model for ECRH（NOT geometrical rays）
〈2〉 Adjoint technique for ECCD calculation
〈3〉 Quasioptical beam model for ECE（NOT geometrical rays）
〈4〉 Fully relativistic dispersion for absorption
（NOT weakly relativistic coefficient in quasi－perp．limit）
〈5〉 Weakly relativistic dispersion for propagation
（NOT cold dispersion）
ECRH\＆CD\＆E code w／multi－rays and relativity has been already proposed，but quasioptical one is not reported before．

Topic 1 <ECRH>

Power deposition w/ Quasioptical beam model

Quasioptical ray tracing code PARADE [1-4]

Schematic image of calculations implemented in PARADE.
$\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{d} \zeta}=\frac{1}{V_{\star}} \frac{\partial H_{\star}}{\partial \boldsymbol{K}}, \quad \frac{\mathrm{d} \boldsymbol{K}}{\mathrm{d} \zeta}=-\frac{1}{V_{\star}} \frac{\partial H_{\star}}{\partial \boldsymbol{X}}$

1. Bending Reference Ray (RR) trajectory $(\boldsymbol{X}, \boldsymbol{K})$ with refraction
2. Local orthogonal coordinate along the RR

3. Arbitrary complex amplitude profile $\phi\left(\tilde{\varrho}^{\sigma}\right)$ with diffraction, dissipation, and mode conversion

$$
\frac{\partial \phi}{\partial \zeta}=\frac{1}{V_{\star}}\left[-i\left(\tilde{L}_{\star \sigma \bar{\sigma}} \tilde{\varrho}^{\sigma} \tilde{\varrho}^{\bar{\sigma}}-U_{\star}\right)+\frac{i}{2} \tilde{\Phi}_{\star}^{\sigma \bar{\sigma}} \partial_{\sigma \bar{\sigma}}^{2}+\Gamma-\tilde{\vartheta}_{\star \bar{\sigma}}^{\sigma} \tilde{\varrho}^{\bar{\sigma}} \partial_{\sigma}-\frac{\tilde{\vartheta}_{\star \sigma}^{\sigma}}{2}\right] \phi
$$

PARADE traces wave beam with its arbitrary quasioptical envelope in inhomogeneous anisotropic media.
[1] I. Y. Dodin et al., Phys. Plasmas (2019)
[2] K. Yanagihara et al., Phys. Plasmas (2019a)
[3] K. Yanagihara et al., Phys. Plasmas (2019b)
[4] K. Yanagihara et al., Phys. Plasmas (2021)

Quasioptical width broadens power deposition

Prediction for JT-60SA scenario 2. $138 \mathrm{GHz} \times \operatorname{mode}\left(\theta_{\mathrm{t}}, \theta_{\mathrm{p}}\right)=(0,0)$.

Electron density and temperature profile

Typical operation scenario 2 \& 5-1 of JT-60SA, and JA-DEMO.

Normalized poloidal flux
These profiles are used for PARADE simulations in this presentation.

Topic 2 <ECCD>
Current drive module based on Adjoint technique

Driven current predictions for tokamak applications

 Adjoint technique $[5,6]$ for reasonable simulation[5] M. Taguchi, Plasma Phys. Controlled Fusion (1989)
[6] N. B. Marushchenko et al., Phys. Plasmas (2011)

$$
\begin{array}{rlrl}
\left\langle J_{\|}\right\rangle= & \frac{e v_{\mathrm{th}}}{\nu_{\mathrm{e} 0}} \frac{\langle b\rangle}{\left\langle b^{2}\right\rangle}\left\langle\int d u^{3} \frac{\partial \chi}{\partial u} \boldsymbol{\Gamma}_{\mathrm{rf}}\right\rangle: \text { current model same with [6] } \\
& \langle\cdots\rangle: \text { flux surface average } & u & =v \gamma \\
& \nu_{\mathrm{e} 0}: \text { collisional frequency } & b & =|B| /\left|B_{\max }\right|
\end{array}
$$

$\chi:$ Spitzer function
-> Corresponds to distribution function in weak E-field. Can be determined immediately, since not to depend on waves.

$$
\boldsymbol{\Gamma}_{\mathrm{rf}}=-\mathrm{D}_{\mathrm{rf}} \cdot \nabla f_{m}: \underset{\rightarrow \text { Quasi-linear diffusion term }}{\rightarrow \text { spatial profile is Improved by PARADE }}
$$

Widely used due to reasonable computational cost. Namely, evaluate driven current, using Spitzer function instead of a distribution function.
Model equations are same with [6], but spatial profiles of wave vector and amplitude are improved by quasioptical analysis of PARADE.
(u-space 3D integral is reduced to 1D problem as shown in appendix.)

Comparison w/ Multi-ray model used in JT-60SA

Power depo. \& current profile in JT-60SA scinario2. 138 GHz X mode.

De-focusing beam w/ long path $->$ Multi-rays are asymptotic to quasioptical beam. $10-15 \mathrm{keV}$ and deep toroidal injection angle $->$ difference bet. $D_{W R, A}$ and $D_{F R, A}$ is small. In such a proper situation, reasonable results are obtained.

Comparison w/ Multi-ray model used in JT-60SA

Power depo. \& current profile in JT-60SA scinario5-1. 110 GHz X mode.

Dissipation-Diffraction interaction, in other words, Absorption-Propagation interaction (see [4,7, next slide]) makes broadening of power deposition \& driven current profile. Conventional ray tracing and most quasioptical codes cannot account this effect.
[4] K. Yanagihara et al., Phys. Plasmas (2021)
[7] K. Yanagihara et al., Nucl. Fusion (2021)

Dissipation-Diffraction Interaction

Intensity profile on beam cross sections along the R.R. in JT-60SA scinario5-1. $110 \mathrm{GHz} \mathrm{X} \mathrm{mode}\left(\theta_{\mathrm{t}}, \theta_{\mathrm{p}}\right)=\left(10^{\circ},-15^{\circ}\right)$.

NOTE THAT, Reference Ray (RR) is on ($\left.\rho^{1}, \rho^{2}\right)=(0.0,0.0)$.

2nd harm. resonant dissipation.
Beam power is dissipated non-uniformly due to inhomogeneous structure of 2nd harm. resonance. Then, beam profile is shifted from the RR position, $\left(\rho^{1}, \rho^{2}\right)=(0.0,0.0)$, and broadened due to diffraction.

Topic 3 <ECE>
Electron cyclotron emission module with quasioptical model

EC emission model (1)

Radiation transfer equation, conventionally used on a geometrical optics, is modified to suit for quasioptical system.

Let us start from the conservation low of the wave action flux (or Poynting flux)

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} \zeta} \int \mathrm{~d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right)=\frac{2}{V_{\star}} \int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \Gamma\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right) \\
\text { where } \phi^{+} \phi=V_{\star}(\zeta) a^{+} a
\end{array}
$$

It can be rewritten to simple form as,

$$
\begin{aligned}
& \frac{\mathrm{d} P(\zeta)}{\mathrm{d} \zeta}=\frac{2}{V_{\star}} \widehat{W}[\Gamma](\zeta) P(\zeta) \\
& \text { where } P(\zeta)=\int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right) \\
& \widehat{W}[f](\zeta)=\frac{\int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) f\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right)}{\int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right)},
\end{aligned}
$$

EC emission model (2)

Radiation transfer equation, conventionally used on a geometrical optics, is modified to suit for quasioptical system.

Introduce the source term \mathcal{B} to consider the radiation as,

$$
\begin{aligned}
& \frac{\mathrm{d} P(\zeta)}{\mathrm{d} \zeta}=\mathfrak{B}(\zeta)-\mathfrak{A}(\zeta) P(\zeta) \\
& \text { where } \mathfrak{A}(\zeta)=-\frac{2}{V_{\star}} \widehat{W}[\Gamma](\zeta) \\
& \mathfrak{B}(\zeta)=\widehat{W}[\beta](\zeta)=\frac{\int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \beta\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right)}{\int \mathrm{d}^{2} \varrho \phi^{+}\left(\zeta, \varrho^{1}, \varrho^{2}\right) \phi\left(\zeta, \varrho^{1}, \varrho^{2}\right)}
\end{aligned}
$$

This representation is quite similar with a conventional model,

$$
N_{r}^{2} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left(\frac{I(\zeta)}{N_{r}^{2}}\right)=\beta(\zeta)-\alpha(\zeta) I(\zeta)
$$

Hence, we can follow a derivation of it, and obtain the modified equation that,

$$
\begin{aligned}
P(\zeta) & =\int \mathrm{d} \zeta \mathfrak{B}(\zeta) \mathrm{e}^{-\tau(\zeta)} \quad \text { where } \tau(\zeta)=\int_{0}^{\zeta} \mathrm{d} \zeta^{\prime} \mathfrak{A}\left(\zeta^{\prime}\right) \\
T_{\mathrm{rad}} & =\frac{8 \pi^{3} c^{2}}{\omega^{2}} P
\end{aligned}
$$

Topic $4<D_{A}>$
Fully relativistic dispersion for Anti-Hermitian part : absorption

Numerical integrated D_{A} for any (=fully relativistic) f_{0}

 Summarized from classic hot dispersion tensor $[8,9]$ as,$$
\begin{gathered}
D_{A}=\frac{\varepsilon_{a}}{\varepsilon_{0}}=-\pi X \sum_{\mathrm{n}=-\infty}^{\infty} \int \frac{\mathrm{d} u^{3}}{\gamma} \delta\left(R_{\mathrm{n}}\right) \boldsymbol{V}_{\mathrm{n}} \boldsymbol{V}_{\mathrm{n}}^{*} \boldsymbol{G} \cdot \nabla f_{0}^{\text {[8] K. Yanagihara, Nucl. Fusion (2022) }} \begin{array}{l}
\text { [9] M. Bornatici et al., Phys. Plasmas (1994) }
\end{array} \\
\boldsymbol{V}_{\mathrm{n}}=u_{\perp}\left(\begin{array}{c}
\frac{1}{2}\left[J_{\mathrm{n}-1}(b)+J_{\mathrm{n}+1}(b)\right] \\
\frac{i}{2}\left[J_{\mathrm{n}-1}(b)-J_{\mathrm{n}+1}(b)\right] \\
\frac{u_{\|}}{u_{\perp}} J_{\mathrm{n}}(b)
\end{array}\right) R_{\mathrm{n}}=\mathrm{n} Y+N_{\|} \frac{u_{\|}}{c}-\gamma \\
\boldsymbol{G} \cdot \nabla=\frac{1}{u_{\perp}}\left(\gamma-N_{\|} \frac{u_{\|}}{c}, N_{\|} \frac{u_{\perp}}{c}\right) \cdot\binom{\partial_{\perp}}{\partial_{\|}} \quad b=\frac{N_{\perp}}{Y} \frac{u_{\perp}}{c} \\
\int \frac{\mathrm{~d} u^{3}}{\gamma}=2 \pi \int u_{\perp} \mathrm{d} u_{\perp} \int \mathrm{d} u_{\|} \quad X=\frac{\omega_{p}^{2}}{\omega^{2}} \quad Y=\frac{\omega_{c}}{\omega}
\end{gathered}
$$

Instead of using Z or F functions, directly adopt a relativistic-Maxwell distribution function into this model and numerically integrate. (※Any distributions are available.) The problem is the calculation cost of 2D integral in velocity space. However, we succeeded to reduce it to 1D problem along the resonance curve.

1-dimentional integral along a resonance curve

 Schematic image in velocity spaceResonance Curve (RC) satisfies

$$
R_{\mathrm{n}}=\mathrm{n} Y+N_{\|} \frac{u_{\|}}{c}-\gamma=0
$$

$2 D$ integral $w / \delta\left(R_{n}=0\right)$ can be reduced
1 D integral along the RC as,

$$
\int \mathrm{d} u_{\perp} \int \mathrm{d} u_{\|} \delta\left(R_{\mathrm{n}}\right)=\int \mathrm{d} s
$$

We can trace the RC by using [8],

$$
\begin{aligned}
& \frac{\mathrm{d} u_{\|}}{\mathrm{d} s}=-\frac{\partial R_{\mathrm{n}}}{\partial u_{\perp}}=\frac{u_{\perp}}{\gamma c} \\
& \frac{\mathrm{~d} u_{\perp}}{\mathrm{d} s}=\frac{\partial R_{\mathrm{n}}}{\partial u_{\|}}=\frac{k_{\|}}{\omega}-\frac{u_{\|}}{\gamma c}
\end{aligned}
$$

Start point can be found on $\mathrm{u}_{\| \mid}$axis by using Newton-Method.

Newton trial start point can be chosen easily from non-relativistic resonance condition,

$$
u_{\|}=\left(\omega-\mathrm{n} \omega_{c}\right) / k_{\|}
$$

-> Substantial reduction of calculation cost is succeeded by introducing RC trace.

Injection－angle dependence of each dissipation model

 Dissipation coefficients $\Gamma \mathrm{w} / \mathrm{D}_{\text {Hot，A }}, \mathrm{D}_{\mathrm{WR}, \mathrm{A}}$ ，and $\mathrm{D}_{\mathrm{FR}, \mathrm{A}}$ ，as functions of $\mathrm{f} / \mathrm{f}_{\mathrm{c}}$

All「 show Doppler broadening，which is significant in parallel－injection．

「 Hot gets too much narrow and large peak in perp．－injection，while「wR $\& \Gamma_{F R}$ are in good agreement．
$\Gamma_{\text {Hot }}$ and 「wr seems to be over－ estimated，for down－shift side of Doppler broadening，especially for parallel－injection．
$\rightarrow D_{F R, A}$ is essential for dissipation modeling w／oblique injection－angle．

Also．．．
${ }^{-} W_{R}$ has negative values in all angles， which need numerical cutoff in practice．
［8］K．Yanagihara，Nucl．Fusion（2022）

Temperature dependence of each dissipation model

 Dissipation coefficients $\Gamma w / D_{\text {Hot,A }}, D_{W R, A}$, and $D_{F R, A}$, as functions of f / f_{c}
$\Gamma_{W R} \& \Gamma_{F R}$ show relativistic down-shift, which become significant in high temp..
$\Gamma_{\text {Hot }}$ and $\Gamma_{\text {wr }}$ seems to be overestimated, for down-shift side of Doppler broadening, especially for high temp..
$\rightarrow \mathrm{D}_{\text {FR,A }}$ is essential for dissipation modeling in high temp. condition.

Also...

- wr has negative values in all angles, which need numerical cutoff in practice.
[8] K. Yanagihara, Nucl. Fusion (2022)

Power absorption w/ fully relativistic D_{A} in JA-DEMO

 Power absorptions simulated by PARADE with Hot, WR, and FR model

Example for JA-DEMO, perpendicularly-injected from out-side position. WR and FR model give different result in obliq. injection.
-> Full-Relativity should be considered in high T_{e} condition.
[8] K. Yanagihara, Nucl. Fusion (2022)

Topic 5 < D_{H} >

Weakly relativistic dispersion for Hermitian part : propagation

Weakly relativistic dispersion for Hermitian part

D_{H} governs wave propagations.

OL \& XL: WR branches deviate from Cold branches near the 1st resonance.
XR: WR branch deviates from Cold branch near the 2nd resonance.
$\rightarrow D_{W R, H}$ makes different propagation path from conventional $D_{C, H}$ near resonances. [8] K. Yanagihara, Nucl. Fusion (2022)

Weak relativity makes additional beam bending

 WR D_{H} makes extra-bending of beam path near the resonance.

Simulations using PARADE with Cold and WR D_{H}.

Propagation path is corrected by installing WR.

In this example, WR trajectory does not reach resonance and does not absorbed at all, while Cold trajectory completely absorbed.

If ones believe Cold D_{H} on JADEMO...
Mis-identification of heating position, damage the facing wall with power of $100 \mathrm{MW} / \mathrm{m}^{2}$, and reflected stray can also damage the diagnostics.
[8] K. Yanagihara, Nucl. Fusion (2022)

Summary

- We report today Application results of Quasioptical code PARADE to ECRH, ECCD, and ECE modeling with relativistic effects in JT-60SA and JA-DEMO plasmas.
- In order to predict ECRH, ECCD, and ECE in reasonable costs with high accuracy, we introduced 5 topics as follows.
- 1. Quasioptical beam model gives broadening of power deposition profile.
- 2. Current drive module based on Adjoint technique to suit for PARADE gives reasonable result.
- 3. EC emission module with quasioptical model gives qualitatively consistent result but need more detailed validations.
- 4. Fully relativistic dispersion with 1 D integral for D_{A} gives different absorption rate, especially in high T_{e} condition and large $\mathrm{N}_{/ /}$condition.
- 5. Weakly relativistic dispersion for D_{H} gives variation of a beam propagation path near the resonance.
- Topics 1-3 will be reported in a new paper with the same (or similar) title as this presentation. Topics 4,5 have been reported in [8].
[8] K. Yanagihara, Nucl. Fusion (2022)

