Electron cyclotron heating and current drive systems on DIII-D

by

Y.Gorelov, M. Cengher, J. Lohr, A. C. Torrezan, W. Grosnickle, R. Brambila, M. P. Ross, J. Squire, G. Sips, S. Bagdy, P. Nesbet, X. Chen

Presented at 21st Joint workshop on electron cyclotron emission (ECE) and electron cyclotron resonance heating (ECRH)

Outline

- Gyrotron system 2022
- Short history of 100 GHz gyrotrons at DIII-D
- Waveguide transmission efficiency
 - a. RF beam quality alignment
 - b. Injected RF power
 - ECH Tokamak wall conditioning
 - Future plans

Different frequency (non EC!) RF projects:

- a. Helicon
- b. Low Hybrid

•

•

ECH System at DIII-D

- Eight gyrotron sockets are available in ECH Hall
- Eight Ø31.75 mm corrugated evacuated waveguides near 94 m each
- Four launchers with one focusing and one movable mirrors for each line
- Two Top ECH launchers
- Waveguides transmission efficiency 75-80%

ECH R+1 Launchers

ECH R+2 (Top) Launchers

Gyrotron Vault 2022

2021 experimental campaign start

Four 1 MW class gyrotrons with total injected ECH power 2.7 MW

Four types of CPI gyrotrons for DIII-D

History of CPI 110 GHz 1 MW class gyrotrons on DIII-D

	Gyrotron	Total # Miters	Measured HE11(%)	Measured Loss MOU %	Measured Transmission w/g %	Estimated transmission w/g %	Power at DIII-D (kW)
VGT - 8110 S/N 106	Leia	9	94	7	81	84	570
VGT - 8110A S/N 108	R2D2	9	80	4.5	79	84	640
VGT - 8110 S/N 104	Luke	10	85	7.5	78	82	625
VGT - 8110A S/N 107	Yoda	10	82.1	3	80	82	740

Free space RF beam measurements

- Efficiency of waveguide transmission lines depends on quality of the RF beam at the input to waveguide
- The RF beam of the gyrotron was measured in free space with infrared camera (IR).
- Results obtained were used for phase retrieval calculations, MOU mirror parameters, spool piece

RF beam characterization in free space

Aligning the RF beam Into waveguide input

Typical IR RF beam measurements

ECH Launchers on DIII-D

Three radial launchers with 6 waveguide and <u>one top</u> <u>launcher are</u> on this image

ECH Launchers at DIII-D (cont.)

240 ° R+ 💓

285° R+

270 ° R+1

255 ° R+1

Four radial launchers with 8 waveguides with one focusing and one movable mirror Top 300° R+2

Zoom on Top launcher mirror, fixed angle

Top90° R+2

14

Extend EC injection into vacuum

- IR camera
 "observes"
 ECH with wide
 band of
 interaction
- Data on Bolometers measurements
- Modest torus pressure rise during ECH
- <u>Good vessel</u>
 <u>conditioning</u>

Lessons from empty camera ECH injection

Lessons from empty camera ECH injection (cont.)

No damages were observed on the wall carbon tiles and covered diagnostics, but....

All direct exposed ceramics part were affected

Tokamak wall conditioning effect

SAN DIEGO

Future plan

2022- two110 GHz CPI gyrotron installation 2023-two next 110 GHz CPI gyrotrons delivery 2024-three more new gyrotrons installation

SUMMARY

- The DIII-D Gyrotron system provided EC power for various experiments during the 2021-2012 campaign, with up to 2.7 MW injected from 4 gyrotrons
 - \succ Pre-ionization
 - > ECCD On-axis and Off-axis to reach steady-state conditions
 - > EC power to sustain low and high density scenarios
 - ➢ EC conditioning of tokamak internal surface
- Six years of experience operating CPI depressed collector gyrotrons has demonstrated lower than expected efficiency and less reliability than non-depressed collector gyrotrons
- GA order four new non-depressed, CuCrZr collector gyrotrons from CPI. Two of them installed and operating now
- New extension building for additional gyrotron stand near completion. Three additional gyrotrons should arrive in 2023

Helicon Current Drive

Klystron SLAC 1 Power 1.2 MW Frequency 476 MHz Tested 1.25 MW into D/L

300 kW power coupled to plasma demonstrated in 2021

Helicon Antenna

High Field Side Launch Lower Hybrid Current Drive

