

Commissioning of the Gyrotron Test Facility FULGOR First Results

G. Gantenbein, S. Illy, J. Jelonnek, T. Ruess, T. Rzesnicki, M. Schmid, S. Stanculovic *Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany*

www.kit.edu

Content

- Introduction
- Requirements on FULGOR
- Main components of the teststand
- Commissioning and first experimental results
- Conclusions

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Background

- Fusion Long-Pulse Gyrotron Laboratory FULGOR
- First Application of project: 2009
- Approval of Project: 2013
- General Goal:

Center for development and testing of high-power gyrotrons for present and future application in magnetically confined plasma

21.06.2022

Main Requirements on FULGOR

Electrical input power	10 MW	
Long pulse operation	Up to 3600 s	
Operating frequency	Up to 240 GHz	
RF power	Up to 4 MW	
Cooling system	For full power operation in CW	
Flexible system for the next decades of gyrotron development		
Output voltage	Up to 130 kV	
Beam current	Up to 120 A	Mor
Gyrotron efficiency	> 60 % (MSDC)	See Sho
Advanced control system, data acqusition and safety system		
0. Constant also at al. Commissioning of the Constant Test Facility FUL COD		

More on MSDC? See: Poster 2-17, B. Ell: *Progress in the Short-Pulse E×B Drift Two-Stage Depressed Collector Prototype for Gyrotrons*

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE & ECRH, June 20 – 24, 2022, ITER Organization, France

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE & ECRH, June 20 - 24, 2022, ITER Organization, France

High Voltage Power Supply

High Voltage DC Power Supply (HVDCPS)

Output Voltage	≤ 90 kV
Output current	≤ 120 A
Pulse length	≤ 3600 s
Maximum output voltage ripple	≤ 500 V _{P-P}
Max. energy deposition into arc	≤ 10 J
Rise time (10% - 90%)	50 μs
Modulation	≤ 5 kHz

EPSM Technology allows several **DC taps for MSDC**

High Voltage Pulsed Power Supply (PPS)

Output Voltage	≤ 40 kV
Output current	≤ 120 A
Pulse length	≤ 5 ms
Max. energy deposition into arc	≤ 10 J

- PSM Technology
- Average power: 12 kW
- In total with HVDCPS: 130 kV

AMPEGON

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Operation Modi

PPS but with BPS

without

Long

pulse

operation

21.06.2022

7

2 G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France Institute for Pulsed Power and

Microwave Technology (IHM)

Body Power Supply

Body Power Supply •

Output Voltage	≤ 50 kV
Output current	≤ 100 mA
Pulse length	≤ 3600 s
Maximum output voltage ripple	$\leq 500 \text{ V}_{\text{P-P}}$
Max. energy deposition into arc	≤ 10 J
Rise time (10% - 90%)	≤ 100 μs
Modulation ($\Delta U \ 20 \ kV$) ¹ Modulation ($\Delta U \ 30 \ kV$) ¹ ¹ (Modulation endurance $\ge 40 \ s$)	≤ 5 kHz ≤ 1 kHz

8

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE & ECRH, June 20 – 24, 2022, ITER Organization, France

Some results from Site Acceptance Tests

High Voltage Power Supply		
Load	Ohmic	
Rise / switch off time (9 kV – 81 kV)	38 μs (several ms adjustable)	
Overshoot (90 kV, 120 A)	278 V, ±0.15 %	
Ripple (90 kV, 5-120 A)	108 Vpp, 0.12 %	
Modulation	5 kHz, 30 kV	
Shortcut rest energie (< 10 J)	Wire test (Cu, 0.015 mm ²)	
Similar results including PPS, 130 kV/120 A		

Body Power Supply

Rise time (9 kV – 81 kV)	80 μs
Overshoot	< ±0.3 %
Ripple	≤ ±0.126 %
Modulation	30 kV/ 1 kHz, 20 kV / 5 kHz for 40 s
Shortcut rest energie (< 10 J)	Wire test (Cu, 0.015 mm ²)

9

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR - First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Superconducting Magnet

- Dry Superconducting Magnet
- Bore hole diameter: 240 mm
- Max. magnetic field strength: 10.5 T
- Optional: diple coils to shift e-beam laterally
- 4 independent coils to optimise configuration/

• \rightarrow under procurement

21.06.2022

10

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

RF Transmission system and absorber load

- Quasi-optical transmission operated under air
- Broadband design with good transmission properties in the range of 170 ...240 GHz
- Water cooled copper mirrors (and polarisers) for CW operation
- 2 MW, CW load with internal teflon pipes for RF absorption in water
- RF entrance diameter: 60 mm, total length ~ 2 m

Designed and manufactured by IGVP, University of Stuttgart

11

μ-Wave Diagnostics

- Upgrade up to 260 GHz
- Frequency measurement using:
 - Filterbank (Estimation of the frequency, sub-channels of 2 GHz, Detection with wide-band RF diodes, sampling with oscilloscope, 24 dB dynamic range)
 - Modulation domain analyzer (analysis of f vs t, high resolution (< 100 kHz), limited bandwidth, 20 dB dynamic range)
- Upgrade of a Pulse Spectrum Analysis System (PSA) to 260 GHz is planned (dynamic range 60 dB)

Karlsruhe Institute of Technolog

Control system

- Control system: SIEMENS TIA V16 with S1500 CPU
- Visualisation: Browser based
- FULGOR Fast Interlock System (FFIS, redundant):
 - 16 Input channels
 - Typ. reaction time 8.5 μ s
 - Arc detectors, vakuum, over current

21.06.2022

13

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Cooling system

- Control of all cooling channels of the gyrotron and teststand
- Visualisation and overview of cooling channels

- Karlsruhe Institute of Technology
- Monitoring of flow rate, pressure, temperature and threshold values
- Interlock signals

21.06.2022

14

22 G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Commissioning and first experimental results

- Installation of new 6 T magnet (Cryomagnetics)
- Installation of a 1.5 MW short pulse gyrotron, 140 GHz
- Pre-prototype W7-X gyrotron with well known performance from previous experiments

(Z. loannidis, et.al., Generation of 1.5MW-140GHz pulses with the modular pre-prototype gyrotron for W7-X, IEEE Electron Device Letters, 42, 6, June 2021, DOI: 10.1109/LED.2021.3073221)

 Start of operation and verification of teststand and magnet in April 2022

21.06.2022

Microwave Technology (IHM)

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE & ECRH, June 20 - 24, 2022, ITER Organization, France

Commissioning and first experimental results

\rightarrow Installation of industrial CW gyrotron

Operation of the 1.5 MW short pulse gyrotron with nominal parameters (70 – 85 kV, ~ 40 - 55 A)

- Output Power: 500 700 kW •
- No time consuming optimisation
- Basic operation of gyrotron and • magnet was successfully verified

140.3 GHz

21.06.2022

Commissioning and first experimental results

- Installation of TH1507U
- Supplier: THALES
- Start of operation: short pulse optimisation

17

G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

Conclusions

- FULGOR teststand has been constructed during the past year
- All systems have been installed and tested (exception: nominal magnet)
- First tests with a short pulse gyrotron have been performed successfully
- Tests with industrial CW gyrotron have been started and are ongoing

Thank you for your attendance!

A big acknowledgement is dedicated to the members of the technical team: T. Kobarg, D. Kranz, R. Lang, W. Leonhardt, G. Marschall, D. Mellein, A. Papenfuß, J. Weggen, A. Zein.

21.06.2022 G. Gantenbein et.al., Commissioning of the Gyrotron Test Facility FULGOR -First Results, 21st ECE &ECRH, June 20 – 24, 2022, ITER Organization, France

