

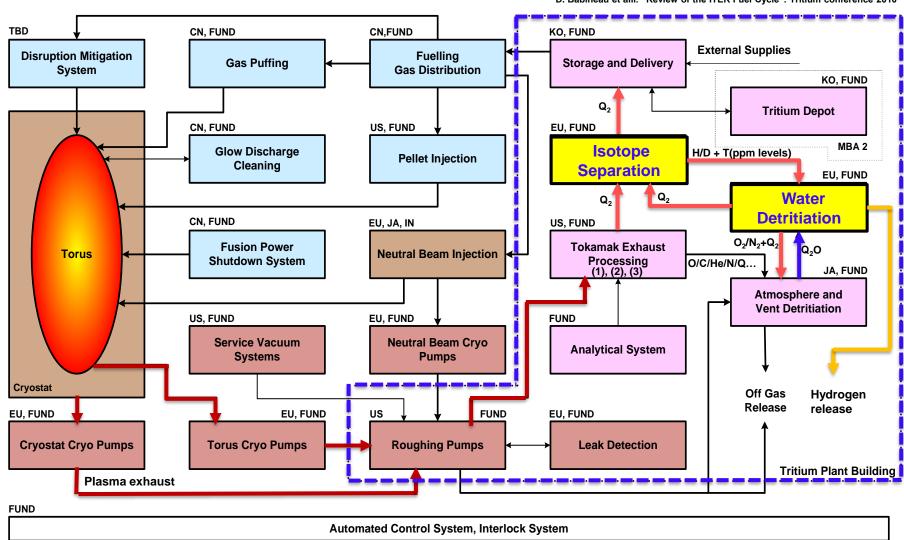
Fuel Cycle Procurements by F4E

Giovanni Piazza

Fuel Cycle Project Manager

Remote ITER Business Meeting - 2021 7-8 April 2021

Presentation Overview


- F4E procurement scope in the ITER Fuel Cycle (FC) area:
 - Water Detritiation System (WDS);
 - Hydrogen Isotope Separation System (ISS).

Hints for F4E Tenders.

The ITER Fuel Cycle: overview

D. Babineau et alii. "Review of the ITER Fuel Cycle". Tritium conference 2010

 \mathbf{Q}_2 : mixture of hydrogen isotopes (H, D, T),

(1) Hydrogen-like gases: He, Ne, Q₂; (2) Air-like gases: CQ₄, CO, CO₂, Ar, N₂, O₂, NQ₃; (3) Water-like gases: Q₂O, hydrocarbons (CQ₄)

Tritium Plant Building Layout

I. Bonnet et alii. ITER Buisiness Forum, 2017

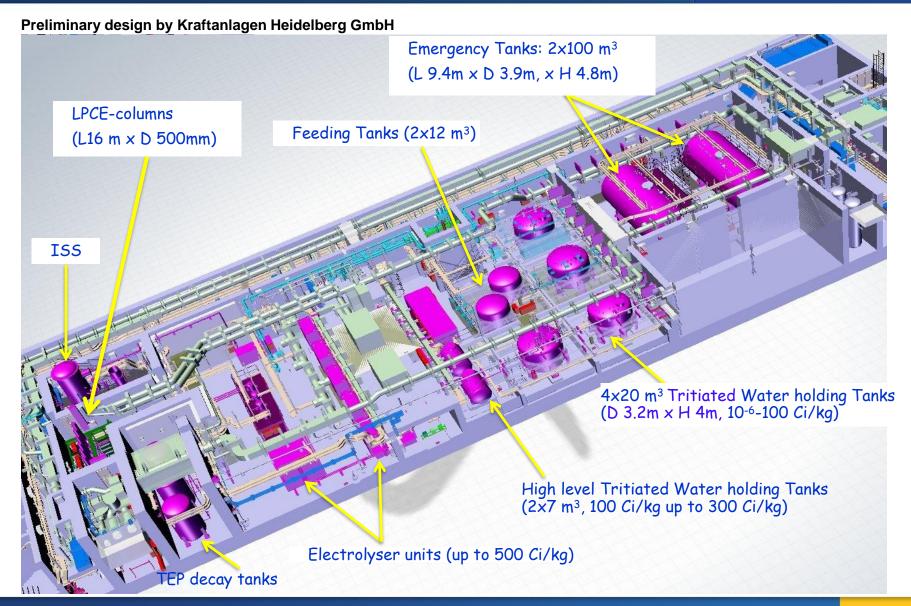
F4E Procurement scope for ITER Fuel Cycle: Water Detritiation System

- WDS objectives are:
 - ➤ To provide interim storage of tritiated water in Water Holding Tanks and Emergency Tanks;
 - To detritiate water and discharge detritiated hydrogen streams (oxygen is exhausted via the gas detritiation system).
- This is achieved by the Combined Electrolysis Catalytic Exchange method:
 - Cracking tritiated water into hydrogen and oxygen (current design 20 kg/h@10Ci/kg);
 - > Stripping the residual **tritium** from the hydrogen stream before its exhaust through stack.
 - > Returning tritium to the Fuel Cycle via the Isotope Separation System (ISS).
 - Releasing Oxygen via Atmosphere Detritiation System (DS)

Procurements for ITER Fuel Cycle: Water Detritiation System

Current status of procurements:

F4E


- Contracts for <u>preliminary and final designs and manufacturing</u> for:
 - Emergency Tanks, Water Holding Tanks, Feeding Tanks (completed 2019);
- Contract for preliminary design of WDS Main part (completed 2016)

<u>ITER IO</u>

- 4 year multi-Lot Engineering framework contract tender underway (Launched in 2019) with one specific Lot for WDS preliminary design support
 - ➤ Focus on providing support on outstanding specific component technical issues to reduce technical risk on core components such as electrolysers, hydrogen permeators, catalytic exchange columns...etc.

ITER WDS: System Layout (Preliminary Design)

ITER WDS: 100 and 20 m3 Tanks installed

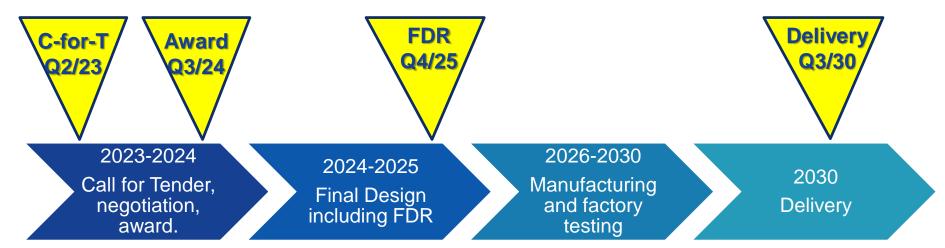
Final Design and Manufacturing by ENSA

ITER WDS: Feeding and High Tritium Level Holding tanks

Loading


Delivery

Water Detritiation System contract 2023-2030



Scope:

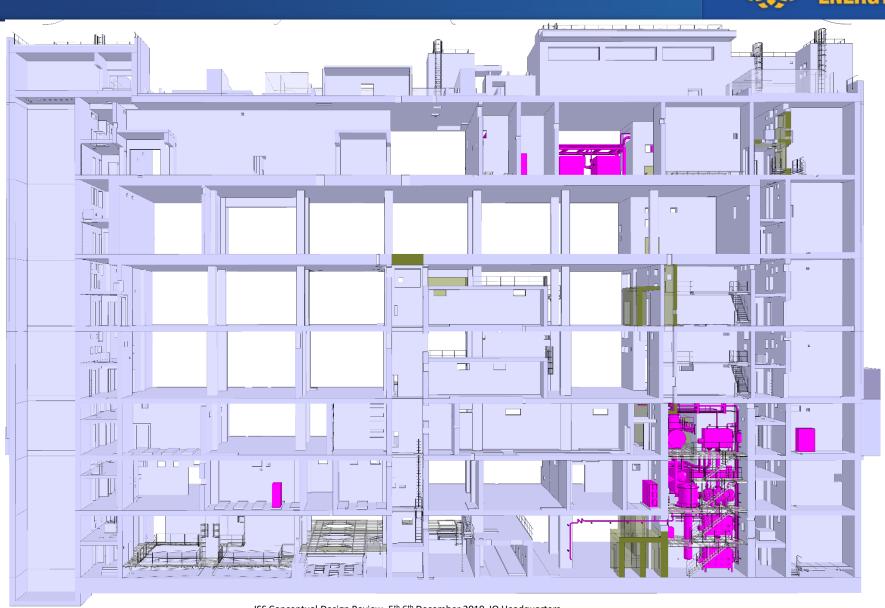
- Final Design,
- Manufacturing,
- Testing, packing & delivery to ITER

Procedure: Competitive with Negotiation

Competences required:

- Chemical engineering: distillation technologies, packing/catalysts, permeators, electrolysers,
- Mechanical Engineering: manufacturing of medium/large size component, glove-boxes
- Handling of tritiated gases,

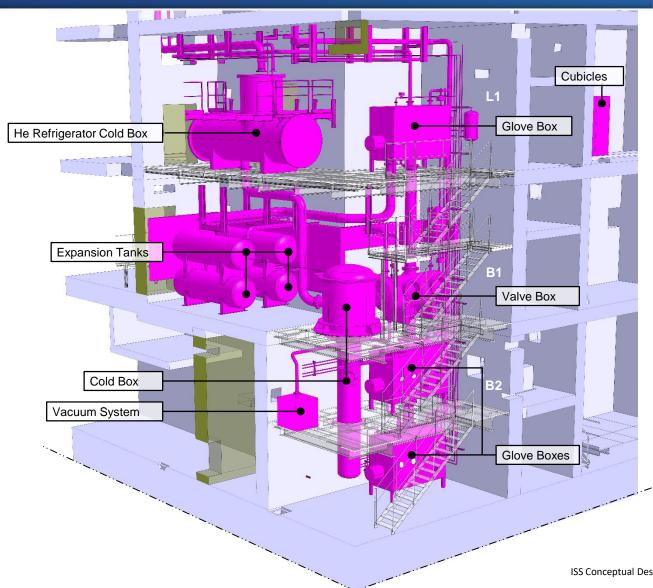
F4E Procurement scope for ITER Fuel Cycle: Hydrogen Isotope Separation System



- HISS Objectives are:
 - Recycling of tritium & deuterium from ITER Tokamak exhaust;
 - > Support of WDS operation by detritiation of hydrogen stream for discharge.

- This is achieved by:
 - Cryogenic distillation to separate the hydrogen isotope mixtures supplied by various ITER systems;
 - ▶ deliver the products at required hydrogen isotope quality to the Storage and Delivery System (SDS) and the WDS;

ITER HISS: location in Tritium Plant Building



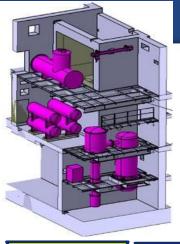
ISS Conceptual Design Review, 5th 6th December 2019, IO Headquarters

ITER HISS - Process room

ISS Conceptual Design Review, 5th 6th December 2019, IO Headquarters

© 2019, ITER Organization

Procurement for ITER Fuel Cycle: Hydrogen Isotope Separation System


Current status of procurement:

ITER IO

- Contracts for conceptual design of HISS completed (2019):
- 4 year multi-Lot Engineering framework contract tender underway (Launched in 2019) with one specific Lot for HISS preliminary design support
 - ➤ Focus on providing support on outstanding specific component technical issues to reduce technical risk on core components such as cryo-heat exchanger cryo-distillation columns.

Hydrogen Isotope Separation System contract 2023-2029

Scope:

- Final Design,
- Manufacturing,
- Testing, packing & delivery to ITER

Procedure: Competitive with Negotiation

Competences required:

- Chemical engineering: distillation technologies, packing, He-refrigerators,
- Mechanical Engineering: manufacturing of medium/large size component, glove-boxes,
- Handling of tritiated gases.

Hints for F4E Tenders

- Key aspects to be considered when applying for F4E procurements:
 - F4E is an EU agency and follows public institution financial regulations, i.e. limited flexibility in comparison with private enterprises.
 - Competitive with Negotiation procedure contracts are planned in the Fuel Cycle area;
 Invitation to Tender (ITT) are published on the EU official Journal and on F4E Website (12-15 months duration from ITT to contract signature).
 - ITER is a Nuclear Installation and a first of its type facility
 very stringent safety and quality requirements
 not negligible effort/time will be spent in:
 - documentation preparation and review;
 - development of design, manufacturing and testing with associated procedures reviews;
 - qualification of personnel with the associated documentation (SQEP);
 - → Audits carried out by F4E and ITER IO but also, potentially, by French Authorities (ASN).

Contact: Fusion for Energy's Market Intelligence Group

Mehdi Daval: mehdi.daval@f4e.europa.eu, (+34.93.489.7454)

Follow us on:

www.f4e.europa.eu

www.twitter.com/fusionforenergy

www.youtube.com/fusionforenergy

www.linkedin.com/company/fusion-for-energy

www.flickr.com/photos/fusionforenergy